BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28087461)

  • 1. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():43-51. PubMed ID: 28108222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells.
    Circu ML; Maloney RE; Aw TY
    Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malate-aspartate shuttle promotes l-lactate oxidation in mitochondria.
    Altinok O; Poggio JL; Stein DE; Bowne WB; Shieh AC; Snyder NW; Orynbayeva Z
    J Cell Physiol; 2020 Mar; 235(3):2569-2581. PubMed ID: 31490559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of succinate yield by manipulating NADH/NAD
    Li J; Li Y; Cui Z; Liang Q; Qi Q
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue from galactose-induced death of Leigh Syndrome patient cells by pyruvate and NAD
    Iannetti EF; Smeitink JAM; Willems PHGM; Beyrath J; Koopman WJH
    Cell Death Dis; 2018 Nov; 9(11):1135. PubMed ID: 30429455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased demand for NAD
    Luengo A; Li Z; Gui DY; Sullivan LB; Zagorulya M; Do BT; Ferreira R; Naamati A; Ali A; Lewis CA; Thomas CJ; Spranger S; Matheson NJ; Vander Heiden MG
    Mol Cell; 2021 Feb; 81(4):691-707.e6. PubMed ID: 33382985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models].
    Dynnik VV; Sel'kov EE; Ovchinnikov IA
    Biokhimiia; 1977 Sep; 42(9):1567-76. PubMed ID: 199286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What couples glycolysis to mitochondrial signal generation in glucose-stimulated insulin secretion?
    Ishihara H; Wollheim CB
    IUBMB Life; 2000 May; 49(5):391-5. PubMed ID: 10902570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats.
    Olguín-Martínez M; Hernández-Espinosa DR; Hernández-Muñoz R
    Free Radic Biol Med; 2013 Dec; 65():1090-1100. PubMed ID: 23994576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates.
    Kauppinen RA; Sihra TS; Nicholls DG
    Biochim Biophys Acta; 1987 Sep; 930(2):173-8. PubMed ID: 3620514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells.
    Fan J; Hitosugi T; Chung TW; Xie J; Ge Q; Gu TL; Polakiewicz RD; Chen GZ; Boggon TJ; Lonial S; Khuri FR; Kang S; Chen J
    Mol Cell Biol; 2011 Dec; 31(24):4938-50. PubMed ID: 21969607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart.
    Kadir AA; Stubbs BJ; Chong CR; Lee H; Cole M; Carr C; Hauton D; McCullagh J; Evans RD; Clarke K
    J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.