These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28087691)

  • 1. Imaging proteins at the single-molecule level.
    Longchamp JN; Rauschenbach S; Abb S; Escher C; Latychevskaia T; Kern K; Fink HW
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1474-1479. PubMed ID: 28087691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition.
    Ochner H; Szilagyi S; Abb S; Gault J; Robinson CV; Malavolti L; Rauschenbach S; Kern K
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.
    Latychevskaia T; Longchamp JN; Escher C; Fink HW
    Ultramicroscopy; 2015 Dec; 159 Pt 2():395-402. PubMed ID: 25687733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospray ion beam deposition plus low-energy electron holography as a tool for imaging individual biomolecules.
    Ochner H; Rauschenbach S; Malavolti L
    Essays Biochem; 2023 Mar; 67(2):151-163. PubMed ID: 36960786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospray ion beam deposition of clusters and biomolecules.
    Rauschenbach S; Stadler FL; Lunedei E; Malinowski N; Koltsov S; Costantini G; Kern K
    Small; 2006 Apr; 2(4):540-7. PubMed ID: 17193083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging conformations of holo- and apo-transferrin on the single-molecule level by low-energy electron holography.
    Ochner H; Szilagyi S; Edte M; Esser TK; Rauschenbach S; Malavolti L; Kern K
    Sci Rep; 2023 Jun; 13(1):10241. PubMed ID: 37353650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-energy electron holographic imaging of gold nanorods supported by ultraclean graphene.
    Longchamp JN; Escher C; Latychevskaia T; Fink HW
    Ultramicroscopy; 2014 Oct; 145():80-4. PubMed ID: 24503115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Reconstruction of Low-Energy Electron Holograms of Individual Proteins.
    Ochner H; Szilagyi S; Edte M; Malavolti L; Rauschenbach S; Kern K
    ACS Nano; 2022 Nov; 16(11):18568-18578. PubMed ID: 36367752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on 'electron holography on dynamic motion of secondary electrons around sciatic nerve tissues'.
    Beleggia M; Pozzi G
    J Electron Microsc (Tokyo); 2008 Oct; 57(5):165-7. PubMed ID: 18723834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron holography on dynamic motion of secondary electrons around sciatic nerve tissues.
    Shindo D; Kim JJ; Xia W; Kim KH; Ohno N; Fujii Y; Terada N; Ohno S
    J Electron Microsc (Tokyo); 2007 Jan; 56(1):1-5. PubMed ID: 17223650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.
    Somodi PK; Twitchett-Harrison AC; Midgley PA; Kardynał BE; Barnes CH; Dunin-Borkowski RE
    Ultramicroscopy; 2013 Nov; 134():160-6. PubMed ID: 23953735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of advanced electron holographic techniques and application to industrial materials and devices.
    Yamamoto K; Hirayama T; Tanji T
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S29-41. PubMed ID: 23536696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.
    Hirsch JE
    Ultramicroscopy; 2013 Oct; 133():67-71. PubMed ID: 23773855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased pressure at the electrospray interface dramatically raises sensitivity in analysis of denaturated proteins.
    Lascoux D; Cravello L; Lemaire D; Forest E
    Rapid Commun Mass Spectrom; 2005; 19(12):1758-62. PubMed ID: 15942921
    [No Abstract]   [Full Text] [Related]  

  • 15. Electron capture dissociation in a branched radio-frequency ion trap.
    Baba T; Campbell JL; Le Blanc JC; Hager JW; Thomson BA
    Anal Chem; 2015 Jan; 87(1):785-92. PubMed ID: 25423608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct analysis of reversed-phase high-performance thin layer chromatography separated tryptic protein digests using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system.
    Emory JF; Walworth MJ; Van Berkel GJ; Schulz M; Minarik S
    Eur J Mass Spectrom (Chichester); 2010; 16(1):21-33. PubMed ID: 20065522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using amino acids for probing structural information of cytochrome c by electrospray ionization mass spectrometry.
    Lu H; Guo Y; Yang P
    J Am Soc Mass Spectrom; 2004 Nov; 15(11):1612-5. PubMed ID: 15519228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging the potential distribution of individual charged impurities on graphene by low-energy electron holography.
    Latychevskaia T; Wicki F; Escher C; Fink HW
    Ultramicroscopy; 2017 Nov; 182():276-282. PubMed ID: 28780143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron holography for fields in solids: problems and progress.
    Lichte H; Börrnert F; Lenk A; Lubk A; Röder F; Sickmann J; Sturm S; Vogel K; Wolf D
    Ultramicroscopy; 2013 Nov; 134():126-34. PubMed ID: 23831133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of electric potential distributions around FEG-emitters by electron holography.
    Oikawa T; Kim JJ; Tomita T; Park HS; Shindo D
    J Electron Microsc (Tokyo); 2007 Oct; 56(5):171-5. PubMed ID: 18000028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.