BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28087758)

  • 1. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols.
    Flora JW; Wilkinson CT; Wilkinson JW; Lipowicz PJ; Skapars JA; Anderson A; Miller JH
    J Chromatogr Sci; 2017 Feb; 55(2):142-148. PubMed ID: 28087758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions.
    Farsalinos KE; Voudris V; Poulas K
    Addiction; 2015 Aug; 110(8):1352-6. PubMed ID: 25996087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonyl emissions from a novel heated tobacco product (IQOS): comparison with an e-cigarette and a tobacco cigarette.
    Farsalinos KE; Yannovits N; Sarri T; Voudris V; Poulas K; Leischow SJ
    Addiction; 2018 Nov; 113(11):2099-2106. PubMed ID: 29920842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols.
    Beauval N; Verrièle M; Garat A; Fronval I; Dusautoir R; Anthérieu S; Garçon G; Lo-Guidice JM; Allorge D; Locoge N
    Int J Hyg Environ Health; 2019 Jan; 222(1):136-146. PubMed ID: 30220464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.
    Jo SH; Kim KH
    J Chromatogr A; 2016 Jan; 1429():369-73. PubMed ID: 26748866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Strategy for Efficiently Collecting Aerosol Condensate Using Silica Fibers: Application to Carbonyl Emissions from E-Cigarettes.
    Stephens WE; de Falco B; Fiore A
    Chem Res Toxicol; 2019 Oct; 32(10):2053-2062. PubMed ID: 31515993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.
    Flora JW; Meruva N; Huang CB; Wilkinson CT; Ballentine R; Smith DC; Werley MS; McKinney WJ
    Regul Toxicol Pharmacol; 2016 Feb; 74():1-11. PubMed ID: 26617410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emissions of Free Radicals, Carbonyls, and Nicotine from the NIDA Standardized Research Electronic Cigarette and Comparison to Similar Commercial Devices.
    Bitzer ZT; Goel R; Reilly SM; Bhangu G; Trushin N; Foulds J; Muscat J; Richie JP
    Chem Res Toxicol; 2019 Jan; 32(1):130-138. PubMed ID: 30525517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas chromatography-mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine.
    Dong JZ; Moldoveanu SC
    J Chromatogr A; 2004 Feb; 1027(1-2):25-35. PubMed ID: 14971480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents.
    Wang P; Chen W; Liao J; Matsuo T; Ito K; Fowles J; Shusterman D; Mendell M; Kumagai K
    PLoS One; 2017; 12(1):e0169811. PubMed ID: 28076380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.
    Gillman IG; Kistler KA; Stewart EW; Paolantonio AR
    Regul Toxicol Pharmacol; 2016 Mar; 75():58-65. PubMed ID: 26743740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols.
    Beauval N; Antherieu S; Soyez M; Gengler N; Grova N; Howsam M; Hardy EM; Fischer M; Appenzeller BMR; Goossens JF; Allorge D; Garçon G; Lo-Guidice JM; Garat A
    J Anal Toxicol; 2017 Oct; 41(8):670-678. PubMed ID: 28985322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldehyde Detection in Electronic Cigarette Aerosols.
    Ogunwale MA; Li M; Ramakrishnam Raju MV; Chen Y; Nantz MH; Conklin DJ; Fu XA
    ACS Omega; 2017 Mar; 2(3):1207-1214. PubMed ID: 28393137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of carbonyl compounds in electronic cigarette refill solutions and aerosols through liquid-phase dinitrophenyl hydrazine derivatization.
    Lee MH; Szulejko JE; Kim KH
    Environ Monit Assess; 2018 Mar; 190(4):200. PubMed ID: 29520488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonyl compounds generated from electronic cigarettes.
    Bekki K; Uchiyama S; Ohta K; Inaba Y; Nakagome H; Kunugita N
    Int J Environ Res Public Health; 2014 Oct; 11(11):11192-200. PubMed ID: 25353061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Derivatization and Quantification of Seven Carbonyls in Cigarette Mainstream Smoke.
    Ding YS; Yan X; Wong J; Chan M; Watson CH
    Chem Res Toxicol; 2016 Jan; 29(1):125-31. PubMed ID: 26700249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours.
    Geiss O; Bianchi I; Barrero-Moreno J
    Int J Hyg Environ Health; 2016 May; 219(3):268-77. PubMed ID: 26847410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke.
    Pang X; Lewis AC
    Sci Total Environ; 2011 Nov; 409(23):5000-9. PubMed ID: 21925713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solvent-free squeezing method for extraction of collected mass from aerosols of electronic cigarettes and heated tobacco products.
    Ito H; Shigeto A; Hashizume T
    J Chromatogr A; 2024 Jul; 1727():465009. PubMed ID: 38776605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory Puffing With Lower Nicotine Concentration E-liquids Increases Carbonyl Exposure in E-cigarette Aerosols.
    Kosmider L; Kimber CF; Kurek J; Corcoran O; Dawkins LE
    Nicotine Tob Res; 2018 Jul; 20(8):998-1003. PubMed ID: 29065196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.