These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28087782)

  • 61. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli.
    Hänninen ML; Hannula M
    J Antimicrob Chemother; 2007 Dec; 60(6):1251-7. PubMed ID: 17911389
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fluoroquinolone resistance and gyrA and parC mutations of Escherichia coli isolated from chicken.
    Lee YJ; Cho JK; Kim KS; Tak RB; Kim AR; Kim JW; Im SK; Kim BH
    J Microbiol; 2005 Oct; 43(5):391-7. PubMed ID: 16273029
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Insertion sequence disruption of adeR and ciprofloxacin resistance caused by efflux pumps and gyrA and parC mutations in Acinetobacter baumannii.
    Lopes BS; Amyes SG
    Int J Antimicrob Agents; 2013 Feb; 41(2):117-21. PubMed ID: 23217848
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single or double mutational alterations of gyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli.
    Bachoual R; Ouabdesselam S; Mory F; Lascols C; Soussy CJ; Tankovic J
    Microb Drug Resist; 2001; 7(3):257-61. PubMed ID: 11759087
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ciprofloxacin resistance in E. coli isolated from turkeys in Great Britain.
    Gosling RJ; Clouting CS; Randall LP; Horton RA; Davies RH
    Avian Pathol; 2012; 41(1):83-9. PubMed ID: 22845325
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge.
    Matange N
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31740490
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluating the efficacy of an algae-based treatment to mitigate elicitation of antibiotic resistance.
    Grimes KL; Dunphy LJ; Loudermilk EM; Melara AJ; Kolling GL; Papin JA; Colosi LM
    Chemosphere; 2019 Dec; 237():124421. PubMed ID: 31382196
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evolutionary Instability of Collateral Susceptibility Networks in Ciprofloxacin-Resistant Clinical Escherichia coli Strains.
    Sørum V; Øynes EL; Møller AS; Harms K; Samuelsen Ø; Podnecky NL; Johnsen PJ
    mBio; 2022 Aug; 13(4):e0044122. PubMed ID: 35862779
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
    Khan DD; Lagerbäck P; Malmberg C; Kristoffersson AN; Wistrand-Yuen E; Sha C; Cars O; Andersson DI; Hughes D; Nielsen EI; Friberg LE
    Int J Antimicrob Agents; 2018 Mar; 51(3):399-406. PubMed ID: 29127049
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of quinolone resistance in fecal Escherichia coli of finishing pigs after ciprofloxacin administration.
    Huang K; Xu CW; Zeng B; Xia QQ; Zhang AY; Lei CW; Guan ZB; Cheng H; Wang HN
    J Vet Med Sci; 2014 Sep; 76(9):1213-8. PubMed ID: 24919413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of mutation and combating the evolution of antibiotic resistance.
    Cirz RT; Chin JK; Andes DR; de Crécy-Lagard V; Craig WA; Romesberg FE
    PLoS Biol; 2005 Jun; 3(6):e176. PubMed ID: 15869329
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mutation supply and the repeatability of selection for antibiotic resistance.
    van Dijk T; Hwang S; Krug J; de Visser JAGM; Zwart MP
    Phys Biol; 2017 Aug; 14(5):055005. PubMed ID: 28699625
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures.
    Matange N; Hegde S; Bodkhe S
    Genetics; 2019 Mar; 211(3):1029-1044. PubMed ID: 30670539
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Clinically relevant mutations in core metabolic genes confer antibiotic resistance.
    Lopatkin AJ; Bening SC; Manson AL; Stokes JM; Kohanski MA; Badran AH; Earl AM; Cheney NJ; Yang JH; Collins JJ
    Science; 2021 Feb; 371(6531):. PubMed ID: 33602825
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pervasive Selection for Clinically Relevant Resistance and Media Adaptive Mutations at Very Low Antibiotic Concentrations.
    Pereira C; Warsi OM; Andersson DI
    Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36627817
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evolution of Antibiotic Resistance without Antibiotic Exposure.
    Knöppel A; Näsvall J; Andersson DI
    Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28893783
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multidrug-resistant bacteria compensate for the epistasis between resistances.
    Moura de Sousa J; Balbontín R; Durão P; Gordo I
    PLoS Biol; 2017 Apr; 15(4):e2001741. PubMed ID: 28419091
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments.
    Zhang Q; Lambert G; Liao D; Kim H; Robin K; Tung CK; Pourmand N; Austin RH
    Science; 2011 Sep; 333(6050):1764-7. PubMed ID: 21940899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selection of Resistant Bacteria in Mallards Exposed to Subinhibitory Concentrations of Ciprofloxacin in Their Water Environment.
    Atterby C; Nykvist M; Lustig U; Andersson DI; Järhult JD; Sandegren L
    Antimicrob Agents Chemother; 2021 Feb; 65(3):. PubMed ID: 33318021
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evolutionary Trajectories to Antibiotic Resistance.
    Hughes D; Andersson DI
    Annu Rev Microbiol; 2017 Sep; 71():579-596. PubMed ID: 28697667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.