BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28087842)

  • 1. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation.
    Roden C; Gaillard J; Kanoria S; Rennie W; Barish S; Cheng J; Pan W; Liu J; Cotsapas C; Ding Y; Lu J
    Genome Res; 2017 Mar; 27(3):374-384. PubMed ID: 28087842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing.
    Auyeung VC; Ulitsky I; McGeary SE; Bartel DP
    Cell; 2013 Feb; 152(4):844-58. PubMed ID: 23415231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis.
    Song L; Axtell MJ; Fedoroff NV
    Curr Biol; 2010 Jan; 20(1):37-41. PubMed ID: 20015653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.
    Duan R; Pak C; Jin P
    Hum Mol Genet; 2007 May; 16(9):1124-31. PubMed ID: 17400653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
    Cai X; Hagedorn CH; Cullen BR
    RNA; 2004 Dec; 10(12):1957-66. PubMed ID: 15525708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N6-methyladenosine marks primary microRNAs for processing.
    Alarcón CR; Lee H; Goodarzi H; Halberg N; Tavazoie SF
    Nature; 2015 Mar; 519(7544):482-5. PubMed ID: 25799998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational Effects of a Cancer-Linked Mutation in Pri-miR-30c RNA.
    Jones AN; Walbrun A; Falleroni F; Rief M; Sattler M
    J Mol Biol; 2022 Sep; 434(18):167705. PubMed ID: 35760371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci.
    Pawlicki JM; Steitz JA
    Cell Cycle; 2009 Feb; 8(3):345-56. PubMed ID: 19177009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs.
    Louloupi A; Ntini E; Liz J; Ørom UA
    RNA; 2017 Jun; 23(6):892-898. PubMed ID: 28250203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmentally regulated expression and complex processing of barley pri-microRNAs.
    Kruszka K; Pacak A; Swida-Barteczka A; Stefaniak AK; Kaja E; Sierocka I; Karlowski W; Jarmolowski A; Szweykowska-Kulinska Z
    BMC Genomics; 2013 Jan; 14():34. PubMed ID: 23324356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STV1, a ribosomal protein, binds primary microRNA transcripts to promote their interaction with the processing complex in Arabidopsis.
    Li S; Liu K; Zhang S; Wang X; Rogers K; Ren G; Zhang C; Yu B
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1424-1429. PubMed ID: 28115696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microprocessor activity controls differential miRNA biogenesis In Vivo.
    Conrad T; Marsico A; Gehre M; Orom UA
    Cell Rep; 2014 Oct; 9(2):542-54. PubMed ID: 25310978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loop nucleotides control primary and mature miRNA function in target recognition and repression.
    Yue SB; Trujillo RD; Tang Y; O'Gorman WE; Chen CZ
    RNA Biol; 2011; 8(6):1115-23. PubMed ID: 22142974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity.
    Króliczewski J; Sobolewska A; Lejnowski D; Collawn JF; Bartoszewski R
    Gene; 2018 Jan; 640():66-72. PubMed ID: 29032146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
    Werner S; Wollmann H; Schneeberger K; Weigel D
    Curr Biol; 2010 Jan; 20(1):42-8. PubMed ID: 20015654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and fate of microRNA editing in human brain.
    Kawahara Y; Megraw M; Kreider E; Iizasa H; Valente L; Hatzigeorgiou AG; Nishikura K
    Nucleic Acids Res; 2008 Sep; 36(16):5270-80. PubMed ID: 18684997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NF90 modulates processing of a subset of human pri-miRNAs.
    Grasso G; Higuchi T; Mac V; Barbier J; Helsmoortel M; Lorenzi C; Sanchez G; Bello M; Ritchie W; Sakamoto S; Kiernan R
    Nucleic Acids Res; 2020 Jul; 48(12):6874-6888. PubMed ID: 32427329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein.
    Fang W; Bartel DP
    Mol Cell; 2020 Apr; 78(2):289-302.e6. PubMed ID: 32302541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.