BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28088170)

  • 1. Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis.
    Bennewitz J; Edel C; Fries R; Meuwissen TH; Wellmann R
    Genet Sel Evol; 2017 Jan; 49(1):7. PubMed ID: 28088170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian models with dominance effects for genomic evaluation of quantitative traits.
    Wellmann R; Bennewitz J
    Genet Res (Camb); 2012 Feb; 94(1):21-37. PubMed ID: 22353246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian random regression method using mixture priors for genome-enabled analysis of time-series high-throughput phenotyping data.
    Qu J; Morota G; Cheng H
    Plant Genome; 2022 Sep; 15(3):e20228. PubMed ID: 35904052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of prior specifications in a shrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction.
    Knürr T; Läärä E; Sillanpää MJ
    Genet Sel Evol; 2013 Jul; 45(1):24. PubMed ID: 23834140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle.
    Mao X; Sahana G; Johansson AM; Liu A; Ismael A; Løvendahl P; De Koning DJ; Guldbrandtsen B
    Sci Rep; 2020 Feb; 10(1):2953. PubMed ID: 32076041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Model with Correlation Between Additive and Dominance Effects.
    Xiang T; Christensen OF; Vitezica ZG; Legarra A
    Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
    Calus MP; de Haas Y; Veerkamp RF
    J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-trait Bayesian method for mapping QTL and genomic prediction.
    Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME
    Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects.
    Sun C; VanRaden PM; Cole JB; O'Connell JR
    PLoS One; 2014; 9(8):e103934. PubMed ID: 25084281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species.
    Legarra A; Croiseau P; Sanchez MP; Teyssèdre S; Sallé G; Allais S; Fritz S; Moreno CR; Ricard A; Elsen JM
    Genet Sel Evol; 2015 Feb; 47(1):6. PubMed ID: 25885597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture.
    Mehrban H; Lee DH; Moradi MH; IlCho C; Naserkheil M; Ibáñez-Escriche N
    Genet Sel Evol; 2017 Jan; 49(1):1. PubMed ID: 28093066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of (co)variances for genomic regions of flexible sizes: application to complex infectious udder diseases in dairy cattle.
    Sørensen LP; Janss L; Madsen P; Mark T; Lund MS
    Genet Sel Evol; 2012 Jul; 44(1):18. PubMed ID: 22640006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits.
    Qu J; Runcie D; Cheng H
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36529897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL fine mapping with Bayes C(π): a simulation study.
    van den Berg I; Fritz S; Boichard D
    Genet Sel Evol; 2013 Jun; 45(1):19. PubMed ID: 23782975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel use of derived genotype probabilities to discover significant dominance effects for milk production traits in dairy cattle.
    Boysen TJ; Heuer C; Tetens J; Reinhardt F; Thaller G
    Genetics; 2013 Feb; 193(2):431-42. PubMed ID: 23222654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL.
    Meuwissen T; van den Berg I; Goddard M
    Genet Sel Evol; 2021 Feb; 53(1):19. PubMed ID: 33637049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome.
    Karaman E; Lund MS; Su G
    Heredity (Edinb); 2020 Feb; 124(2):274-287. PubMed ID: 31641237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.