These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28088215)
21. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. Schausberger P; Davaasambuu U; Saussure S; Christiansen IC R Soc Open Sci; 2018 Apr; 5(4):172110. PubMed ID: 29765663 [TBL] [Abstract][Full Text] [Related]
22. The generalist predatory mite Anystis baccarum (Acari: Anystidae) as a new biocontrol agent for western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Saito T; Brownbridge M Exp Appl Acarol; 2022 Mar; 86(3):357-369. PubMed ID: 35192109 [TBL] [Abstract][Full Text] [Related]
23. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
24. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Vangansbeke D; Nguyen DT; Audenaert J; Verhoeven R; Gobin B; Tirry L; De Clercq P Pest Manag Sci; 2016 Mar; 72(3):466-73. PubMed ID: 25755020 [TBL] [Abstract][Full Text] [Related]
25. Amblyseius andersoni Chant (Acari: Phytoseiidae), a successful predatory mite on Rosa spp. van der Linden A Commun Agric Appl Biol Sci; 2004; 69(3):157-63. PubMed ID: 15759407 [TBL] [Abstract][Full Text] [Related]
26. Functional and Numerical Responses of Three Species of Predatory Phytoseiid Mites (Acari: Phytoseiidae) to Thrips flavidulus (Thysanoptera: Thripidae). Yao H; Zheng W; Tariq K; Zhang H Neotrop Entomol; 2014 Oct; 43(5):437-45. PubMed ID: 27193954 [TBL] [Abstract][Full Text] [Related]
27. Intraguild predation among Scolothrips longicornis (Thysanoptera: Thripidae), Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) under laboratory conditions. Farazmand A; Fathipour Y; Kamali K Insect Sci; 2015 Apr; 22(2):263-72. PubMed ID: 23956242 [TBL] [Abstract][Full Text] [Related]
28. A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Dalir S; Hajiqanbar H; Fathipour Y; Khanamani M Pest Manag Sci; 2021 Dec; 77(12):5418-5429. PubMed ID: 34329533 [TBL] [Abstract][Full Text] [Related]
29. Neoseiulus mites as biological control agents against Megalurothrips usitatus (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) on cowpea crop: laboratory to field. Zhang YF; Zang LS; Guo LH; Sukhwinder S; Wu SY; Yang X; Tang LD J Econ Entomol; 2024 Aug; 117(4):1367-1376. PubMed ID: 38780155 [TBL] [Abstract][Full Text] [Related]
30. Prey consumption rates and compatibility with pesticides of four predatory mites from the family Phytoseiidae attacking Thrips palmi Karny (Thysanoptera: Thripidae). Cuthbertson AG; Mathers JJ; Croft P; Nattriss N; Blackburn LF; Luo W; Northing P; Murai T; Jacobson RJ; Walters KF Pest Manag Sci; 2012 Sep; 68(9):1289-95. PubMed ID: 22517790 [TBL] [Abstract][Full Text] [Related]
31. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
32. Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Ghasemzadeh S; Leman A; Messelink GJ Exp Appl Acarol; 2017 Oct; 73(2):209-221. PubMed ID: 29128983 [TBL] [Abstract][Full Text] [Related]
33. Constitutive and Operational Variation of Learning in Foraging Predatory Mites. Seiter M; Schausberger P PLoS One; 2016; 11(11):e0166334. PubMed ID: 27814380 [TBL] [Abstract][Full Text] [Related]
34. Biology and predation capacity of Parasitus bituberosus (Acari: Mesostigmata: Parasitidae) on Frankliniella occidentalis (Thysanoptera: Thripidae), and free-living nematodes as its complementary prey. Rueda-Ramírez D; Rios-Malaver D; Varela-Ramírez A; Moraes GJ Pest Manag Sci; 2019 Jul; 75(7):1819-1830. PubMed ID: 30632259 [TBL] [Abstract][Full Text] [Related]
35. Thysanoptera as predators: their diversity and significance as biological control agents. Wang Z; Mound LA; Hussain M; Arthurs SP; Mao R Pest Manag Sci; 2022 Dec; 78(12):5057-5070. PubMed ID: 36087293 [TBL] [Abstract][Full Text] [Related]
36. Preliminary Studies on the Predation of the Mite Michalska K; Jena MK; Mrowińska A; Nowakowski P; Maciejewska D; Ziółkowska K; Studnicki M; Wit M Insects; 2023 Sep; 14(9):. PubMed ID: 37754714 [TBL] [Abstract][Full Text] [Related]
37. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Cakmak I; Janssen A; Sabelis MW Exp Appl Acarol; 2006; 38(1):33-46. PubMed ID: 16550333 [TBL] [Abstract][Full Text] [Related]
38. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Vangansbeke D; Duarte MV; Gobin B; Tirry L; Wäckers F; De Clercq P Pest Manag Sci; 2020 May; 76(5):1841-1846. PubMed ID: 31825551 [TBL] [Abstract][Full Text] [Related]
39. Does Long-Term Feeding on Alternative Prey Affect the Biological Performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the Target Spider Mites? Li YY; Zhang GH; Tian CB; Liu MX; Liu YQ; Liu H; Wang JJ J Econ Entomol; 2017 Jun; 110(3):915-923. PubMed ID: 28334233 [TBL] [Abstract][Full Text] [Related]
40. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Venzon M; Janssen A; Sabelis MW Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]