BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28088278)

  • 1. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies.
    Gagnebin Y; Tonoli D; Lescuyer P; Ponte B; de Seigneux S; Martin PY; Schappler J; Boccard J; Rudaz S
    Anal Chim Acta; 2017 Feb; 955():27-35. PubMed ID: 28088278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Urine metabolomics analysis based on ultra performance liquid chromatography-high resolution mass spectrometry combined with osmolality calibration sample concentration variability].
    He Z; Lin H; Gui J; Zhu W; He J; Wang H; Feng L
    Se Pu; 2021 Apr; 39(4):391-398. PubMed ID: 34227759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses.
    Chetwynd AJ; Abdul-Sada A; Holt SG; Hill EM
    J Chromatogr A; 2016 Jan; 1431():103-110. PubMed ID: 26755417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics.
    Vogl FC; Mehrl S; Heizinger L; Schlecht I; Zacharias HU; Ellmann L; Nürnberger N; Gronwald W; Leitzmann MF; Rossert J; Eckardt KU; Dettmer K; Oefner PJ;
    Anal Bioanal Chem; 2016 Nov; 408(29):8483-8493. PubMed ID: 27815612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmolality-based normalization enhances statistical discrimination of untargeted metabolomic urine analysis: results from a comparative study.
    Mervant L; Tremblay-Franco M; Jamin EL; Kesse-Guyot E; Galan P; Martin JF; Guéraud F; Debrauwer L
    Metabolomics; 2021 Jan; 17(1):2. PubMed ID: 33389209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data.
    Cook T; Ma Y; Gamagedara S
    J Pharm Biomed Anal; 2020 Jan; 177():112854. PubMed ID: 31518861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normalization strategies for metabonomic analysis of urine samples.
    Warrack BM; Hnatyshyn S; Ott KH; Reily MD; Sanders M; Zhang H; Drexler DM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Feb; 877(5-6):547-52. PubMed ID: 19185549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies.
    Kamleh MA; Ebbels TM; Spagou K; Masson P; Want EJ
    Anal Chem; 2012 Mar; 84(6):2670-7. PubMed ID: 22264131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD.
    Khamis MM; Holt T; Awad H; El-Aneed A; Adamko DJ
    Metabolomics; 2018 Aug; 14(9):115. PubMed ID: 30830407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of injection volume calibration by creatinine and MS signals' normalization to overcome urine variability in LC-MS-based metabolomics studies.
    Chen Y; Shen G; Zhang R; He J; Zhang Y; Xu J; Yang W; Chen X; Song Y; Abliz Z
    Anal Chem; 2013 Aug; 85(16):7659-65. PubMed ID: 23855648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS.
    Nam SL; Mata AP; Dias RP; Harynuk JJ
    Metabolites; 2020 Sep; 10(9):. PubMed ID: 32961779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Application of Ultra-Performance Liquid Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping.
    Lewis MR; Pearce JT; Spagou K; Green M; Dona AC; Yuen AH; David M; Berry DJ; Chappell K; Horneffer-van der Sluis V; Shaw R; Lovestone S; Elliott P; Shockcor J; Lindon JC; Cloarec O; Takats Z; Holmes E; Nicholson JK
    Anal Chem; 2016 Sep; 88(18):9004-13. PubMed ID: 27479709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Effect of Data Merging and Postacquisition Normalization on Statistical Analysis of Untargeted High-Resolution Mass Spectrometry Based Urinary Metabolomics Data.
    Brix F; Demetrowitsch T; Jensen-Kroll J; Zacharias HU; Szymczak S; Laudes M; Schreiber S; Schwarz K
    Anal Chem; 2024 Jan; 96(1):33-40. PubMed ID: 38113356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data.
    Thonusin C; IglayReger HB; Soni T; Rothberg AE; Burant CF; Evans CR
    J Chromatogr A; 2017 Nov; 1523():265-274. PubMed ID: 28927937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.
    Khamis MM; Adamko DJ; El-Aneed A
    Mass Spectrom Rev; 2017 Mar; 36(2):115-134. PubMed ID: 25881008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a metabolomic approach based on urine samples and direct infusion mass spectrometry.
    González-Domínguez R; Castilla-Quintero R; García-Barrera T; Gómez-Ariza JL
    Anal Biochem; 2014 Nov; 465():20-7. PubMed ID: 25064643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease.
    Peng J; Guo K; Xia J; Zhou J; Yang J; Westaway D; Wishart DS; Li L
    J Proteome Res; 2014 Oct; 13(10):4457-69. PubMed ID: 25164377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for comparative metabolomics in urine using high resolution mass spectrometry.
    Ramakrishnan P; Nair S; Rangiah K
    J Chromatogr A; 2016 Apr; 1443():83-92. PubMed ID: 27012786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry.
    Di Poto C; Tian X; Peng X; Heyman HM; Szesny M; Hess S; Cazares LH
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):2072-2080. PubMed ID: 34107214
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.