BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28088357)

  • 1. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. II: Multivariate spike and slab priors for marker effects and derivation of approximate Bayes and fractional Bayes factors for the complete family of models.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():131-141. PubMed ID: 28088357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. I: Multivariate Gaussian priors for marker effects and derivation of the joint probability mass function of genotypes.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():8-19. PubMed ID: 28043819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling correlated marker effects in genome-wide prediction via Gaussian concentration graph models.
    Martínez CA; Khare K; Rahman S; Elzo MA
    J Theor Biol; 2018 Jan; 437():67-78. PubMed ID: 29055677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
    Martínez CA; Khare K; Rahman S; Elzo MA
    J Anim Breed Genet; 2017 Oct; 134(5):412-421. PubMed ID: 28804930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
    Montesinos-López OA; Montesinos-López A; Crossa J; Montesinos-López JC; Luna-Vázquez FJ; Salinas-Ruiz J; Herrera-Morales JR; Buenrostro-Mariscal R
    G3 (Bethesda); 2017 Jun; 7(6):1833-1853. PubMed ID: 28391241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.
    Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R
    Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Genomic Bayesian Multi-trait and Multi-environment Model.
    Montesinos-López OA; Montesinos-López A; Crossa J; Toledo FH; Pérez-Hernández O; Eskridge KM; Rutkoski J
    G3 (Bethesda); 2016 Sep; 6(9):2725-44. PubMed ID: 27342738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint variable selection and network modeling for detecting eQTLs.
    Cao X; Ding L; Mersha TB
    Stat Appl Genet Mol Biol; 2020 Feb; 19(1):. PubMed ID: 32078577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.
    Gianola D; Wu XL; Manfredi E; Simianer H
    Genetica; 2010 Oct; 138(9-10):959-77. PubMed ID: 20737196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors.
    Cheng H; Kizilkaya K; Zeng J; Garrick D; Fernando R
    Genetics; 2018 May; 209(1):89-103. PubMed ID: 29514861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imputation of missing single nucleotide polymorphism genotypes using a multivariate mixed model framework.
    Calus MP; Veerkamp RF; Mulder HA
    J Anim Sci; 2011 Jul; 89(7):2042-9. PubMed ID: 21357451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits.
    Katsara MA; Branicki W; Pośpiech E; Hysi P; Walsh S; Kayser M; Nothnagel M;
    Forensic Sci Int Genet; 2021 Jan; 50():102412. PubMed ID: 33260052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction models for clustered data with informative priors for the random effects: a simulation study.
    Ni H; Groenwold RHH; Nielen M; Klugkist I
    BMC Med Res Methodol; 2018 Aug; 18(1):83. PubMed ID: 30081875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian random regression method using mixture priors for genome-enabled analysis of time-series high-throughput phenotyping data.
    Qu J; Morota G; Cheng H
    Plant Genome; 2022 Sep; 15(3):e20228. PubMed ID: 35904052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals.
    Fernando RL; Cheng H; Golden BL; Garrick DJ
    Genet Sel Evol; 2016 Dec; 48(1):96. PubMed ID: 27931187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.