These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups. White L; Donohue I; Emmerson MC; O'Connor NE Glob Chang Biol; 2018 Dec; 24(12):5853-5866. PubMed ID: 30246490 [TBL] [Abstract][Full Text] [Related]
43. Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite. Franzova VA; MacLeod CD; Wang T; Harley CDG Int J Parasitol; 2019 Dec; 49(13-14):1015-1021. PubMed ID: 31655036 [TBL] [Abstract][Full Text] [Related]
44. Coral physiology and microbiome dynamics under combined warming and ocean acidification. Grottoli AG; Dalcin Martins P; Wilkins MJ; Johnston MD; Warner ME; Cai WJ; Melman TF; Hoadley KD; Pettay DT; Levas S; Schoepf V PLoS One; 2018; 13(1):e0191156. PubMed ID: 29338021 [TBL] [Abstract][Full Text] [Related]
45. Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams. Schaum CE; ; Ffrench-Constant R; Lowe C; Ólafsson JS; Padfield D; Yvon-Durocher G Glob Chang Biol; 2018 Apr; 24(4):1793-1803. PubMed ID: 29281766 [TBL] [Abstract][Full Text] [Related]
46. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Russell BD; Connell SD; Findlay HS; Tait K; Widdicombe S; Mieszkowska N Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120438. PubMed ID: 23980241 [TBL] [Abstract][Full Text] [Related]
47. Ocean warming and acidification affect the nutritional quality of the commercially-harvested turbinid snail Turbo militaris. Ab Lah R; Kelaher BP; Bucher D; Benkendorff K Mar Environ Res; 2018 Oct; 141():100-108. PubMed ID: 30119918 [TBL] [Abstract][Full Text] [Related]
48. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp. Narvarte BCV; Nelson WA; Roleda MY Environ Pollut; 2020 Nov; 266(Pt 1):115344. PubMed ID: 32829170 [TBL] [Abstract][Full Text] [Related]
49. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment. Sommer U; Paul C; Moustaka-Gouni M PLoS One; 2015; 10(5):e0125239. PubMed ID: 25993440 [TBL] [Abstract][Full Text] [Related]
50. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Gruber N Philos Trans A Math Phys Eng Sci; 2011 May; 369(1943):1980-96. PubMed ID: 21502171 [TBL] [Abstract][Full Text] [Related]
51. A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals. Walden G; Noirot C; Nagelkerken I Sci Total Environ; 2019 Nov; 690():596-603. PubMed ID: 31301500 [TBL] [Abstract][Full Text] [Related]
52. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Kamya PZ; Dworjanyn SA; Hardy N; Mos B; Uthicke S; Byrne M Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941 [TBL] [Abstract][Full Text] [Related]
53. Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. Hu N; Bourdeau PE; Harlos C; Liu Y; Hollander J Sci Total Environ; 2022 Jun; 827():154244. PubMed ID: 35245550 [TBL] [Abstract][Full Text] [Related]
54. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Maulvault AL; Santos LHMLM; Paula JR; Camacho C; Pissarra V; Fogaça F; Barbosa V; Alves R; Ferreira PP; Barceló D; Rodriguez-Mozaz S; Marques A; Diniz M; Rosa R Sci Total Environ; 2018 Sep; 634():1136-1147. PubMed ID: 29660870 [TBL] [Abstract][Full Text] [Related]
55. Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Milazzo M; Alessi C; Quattrocchi F; Chemello R; D'Agostaro R; Gil J; Vaccaro AM; Mirto S; Gristina M; Badalamenti F Sci Total Environ; 2019 Jun; 667():41-48. PubMed ID: 30825820 [TBL] [Abstract][Full Text] [Related]
56. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499 [TBL] [Abstract][Full Text] [Related]
57. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Nagelkerken I; Munday PL Glob Chang Biol; 2016 Mar; 22(3):974-89. PubMed ID: 26700211 [TBL] [Abstract][Full Text] [Related]
58. Combined, short-term exposure to reduced seawater pH and elevated temperature induces community shifts in an intertidal meiobenthic assemblage. Mevenkamp L; Ong EZ; Van Colen C; Vanreusel A; Guilini K Mar Environ Res; 2018 Feb; 133():32-44. PubMed ID: 29198410 [TBL] [Abstract][Full Text] [Related]
59. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content. Garzke J; Hansen T; Ismar SM; Sommer U PLoS One; 2016; 11(5):e0155952. PubMed ID: 27224476 [TBL] [Abstract][Full Text] [Related]
60. Who wins or loses matters: Strongly interacting consumers drive seagrass resistance under ocean acidification. Lee J; Hughes BB; Kroeker KJ; Owens A; Wong C; Micheli F Sci Total Environ; 2022 Feb; 808():151594. PubMed ID: 34826463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]