These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 28088548)
1. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Wakhid N; Hirano T; Okimoto Y; Nurzakiah S; Nursyamsi D Sci Total Environ; 2017 Mar; 581-582():857-865. PubMed ID: 28088548 [TBL] [Abstract][Full Text] [Related]
2. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Hirano T; Kusin K; Limin S; Osaki M Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585 [TBL] [Abstract][Full Text] [Related]
3. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia. Itoh M; Okimoto Y; Hirano T; Kusin K Sci Total Environ; 2017 Dec; 609():906-915. PubMed ID: 28783903 [TBL] [Abstract][Full Text] [Related]
5. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171 [TBL] [Abstract][Full Text] [Related]
6. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Khasanah N; van Noordwijk M Mitig Adapt Strateg Glob Chang; 2019; 24(1):147-163. PubMed ID: 30662320 [TBL] [Abstract][Full Text] [Related]
7. The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. van Asselen S; Erkens G; Stouthamer E; Woolderink HAG; Geeraert REE; Hefting MM Sci Total Environ; 2018 Sep; 636():177-191. PubMed ID: 29704713 [TBL] [Abstract][Full Text] [Related]
8. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067 [TBL] [Abstract][Full Text] [Related]
9. Peatland groundwater level in the Indonesian maritime continent as an alert for El Niño and moderate positive Indian Ocean dipole events. Sulaiman A; Osaki M; Takahashi H; Yamanaka MD; Susanto RD; Shimada S; Kimura K; Hirano T; Wetadewi RI; Sisva S; Kato T; Kozan O; Kubo H; Awaluddin A; Tsuji N Sci Rep; 2023 Jan; 13(1):939. PubMed ID: 36653400 [TBL] [Abstract][Full Text] [Related]
10. CO Hoyt AM; Gandois L; Eri J; Kai FM; Harvey CF; Cobb AR Glob Chang Biol; 2019 Sep; 25(9):2885-2899. PubMed ID: 31100190 [TBL] [Abstract][Full Text] [Related]
11. Integrated water management practice in tropical peatland agriculture has low carbon emissions and subsidence rates. Fawzi NI; Sumawinata B; Suwardi ; Rahmasary AN; Qurani IZ; Naufaldary RG; Nabillah R; Palunggono HB; Mulyanto B Heliyon; 2024 Mar; 10(5):e26661. PubMed ID: 38444506 [TBL] [Abstract][Full Text] [Related]
12. Tropical peat subsidence rates are related to decadal LULC changes: Insights from InSAR analysis. Umarhadi DA; Widyatmanti W; Kumar P; Yunus AP; Khedher KM; Kharrazi A; Avtar R Sci Total Environ; 2022 Apr; 816():151561. PubMed ID: 34767891 [TBL] [Abstract][Full Text] [Related]
13. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Warren M; Hergoualc'h K; Kauffman JB; Murdiyarso D; Kolka R Carbon Balance Manag; 2017 Dec; 12(1):12. PubMed ID: 28527145 [TBL] [Abstract][Full Text] [Related]
14. Impact of forest plantation on methane emissions from tropical peatland. Deshmukh CS; Julius D; Evans CD; Nardi ; Susanto AP; Page SE; Gauci V; Laurén A; Sabiham S; Agus F; Asyhari A; Kurnianto S; Suardiwerianto Y; Desai AR Glob Chang Biol; 2020 Apr; 26(4):2477-2495. PubMed ID: 31991028 [TBL] [Abstract][Full Text] [Related]
15. The amount of carbon released from peat and forest fires in Indonesia during 1997. Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213 [TBL] [Abstract][Full Text] [Related]
16. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
17. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sangok FE; Maie N; Melling L; Watanabe A Sci Total Environ; 2017 Jun; 587-588():381-388. PubMed ID: 28242223 [TBL] [Abstract][Full Text] [Related]
18. Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition. Tolunay D; Kowalchuk GA; Erkens G; Hefting MM Sci Total Environ; 2024 Jun; 930():172639. PubMed ID: 38670365 [TBL] [Abstract][Full Text] [Related]
19. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Wijedasa LS; Sloan S; Page SE; Clements GR; Lupascu M; Evans TA Glob Chang Biol; 2018 Oct; 24(10):4598-4613. PubMed ID: 29855120 [TBL] [Abstract][Full Text] [Related]
20. Carbon dioxide emissions through land use change, fire, and oxidative peat decomposition in Borneo. Shiraishi T; Hirata R; Hayashi M; Hirano T Sci Rep; 2023 Aug; 13(1):13067. PubMed ID: 37567930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]