These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28088566)
1. Removal of salicylic acid as an emerging contaminant by a polar nano-dendritic adsorbent from aqueous media. Arshadi M; Mousavinia F; Abdolmaleki MK; Amiri MJ; Khalafi-Nezhad A J Colloid Interface Sci; 2017 May; 493():138-149. PubMed ID: 28088566 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. Arshadi M; Mousavinia F; Khalafi-Nezhad A; Firouzabadi H; Abbaspourrad A J Colloid Interface Sci; 2017 Nov; 505():293-306. PubMed ID: 28582722 [TBL] [Abstract][Full Text] [Related]
3. A supported dendrimer with terminal symmetric primary amine sites for adsorption of salicylic acid. Arshadi M; Abdolmaleki MK; Eskandarloo H; Abbaspourrad A J Colloid Interface Sci; 2019 Mar; 540():501-514. PubMed ID: 30669107 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies. Arshadi M; Mousavinia F; Amiri MJ; Faraji AR J Colloid Interface Sci; 2016 Dec; 483():118-131. PubMed ID: 27552420 [TBL] [Abstract][Full Text] [Related]
5. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study. Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483 [TBL] [Abstract][Full Text] [Related]
6. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Kaliannan D; Palaninaicker S; Palanivel V; Mahadeo MA; Ravindra BN; Jae-Jin S Environ Sci Pollut Res Int; 2019 Feb; 26(6):5305-5314. PubMed ID: 30446914 [TBL] [Abstract][Full Text] [Related]
7. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies. Jin T; Yuan W; Xue Y; Wei H; Zhang C; Li K Environ Sci Pollut Res Int; 2017 Feb; 24(6):5238-5248. PubMed ID: 28004365 [TBL] [Abstract][Full Text] [Related]
8. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216 [TBL] [Abstract][Full Text] [Related]
9. Ultrasonic-assisted recycling of Nile tilapia fish scale biowaste into low-cost nano-hydroxyapatite: Ultrasonic-assisted adsorption for Hg Sricharoen P; Limchoowong N; Nuengmatcha P; Chanthai S Ultrason Sonochem; 2020 May; 63():104966. PubMed ID: 31972376 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of CS/β-CD/Nano-ZnO composite porous membrane optimized by Box-Behnken for the adsorption of Congo red. Yan X; Zhang X; Li Q Environ Sci Pollut Res Int; 2018 Aug; 25(22):22244-22258. PubMed ID: 29804255 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution. Hamadneh I; Alatawi A; Zalloum R; Albuqain R; Alsotari S; Khalili FI; Al-Dujaili AH Environ Sci Pollut Res Int; 2019 Jul; 26(20):20969-20980. PubMed ID: 31115818 [TBL] [Abstract][Full Text] [Related]
12. Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies. Arshadi M; Faraji AR; Mehravar M J Colloid Interface Sci; 2015 Feb; 440():91-101. PubMed ID: 25460694 [TBL] [Abstract][Full Text] [Related]
13. 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Rout K; Mohapatra M; Anand S Dalton Trans; 2012 Mar; 41(11):3302-12. PubMed ID: 22286102 [TBL] [Abstract][Full Text] [Related]
14. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. Ibrahim MN; Ngah WS; Norliyana MS; Daud WR; Rafatullah M; Sulaiman O; Hashim R J Hazard Mater; 2010 Oct; 182(1-3):377-85. PubMed ID: 20619537 [TBL] [Abstract][Full Text] [Related]
15. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. Nezamzadeh-Ejhieh A; Kabiri-Samani M J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926 [TBL] [Abstract][Full Text] [Related]
16. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies. Nayak AK; Pal A J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730 [TBL] [Abstract][Full Text] [Related]
17. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan. Li M; Zhang Z; Li R; Wang JJ; Ali A Int J Biol Macromol; 2016 May; 86():876-84. PubMed ID: 26879912 [TBL] [Abstract][Full Text] [Related]
18. Removal of Pb (II) from aqueous solution by sulfur-functionalized walnut shell. Lu XG; Guo YT Environ Sci Pollut Res Int; 2019 May; 26(13):12776-12787. PubMed ID: 30877546 [TBL] [Abstract][Full Text] [Related]
19. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent. Sheshmani S; Ashori A; Hasanzadeh S Int J Biol Macromol; 2014 Jul; 68():218-24. PubMed ID: 24813679 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Subbaiah MV; Kim DS Ecotoxicol Environ Saf; 2016 Jun; 128():109-17. PubMed ID: 26921544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]