These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28088594)

  • 1. The number of primary events per variable affects estimation of the subdistribution hazard competing risks model.
    Austin PC; Allignol A; Fine JP
    J Clin Epidemiol; 2017 Mar; 83():75-84. PubMed ID: 28088594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical recommendations for reporting Fine-Gray model analyses for competing risk data.
    Austin PC; Fine JP
    Stat Med; 2017 Nov; 36(27):4391-4400. PubMed ID: 28913837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of censoring in competing risks analysis of the subdistribution hazard.
    Donoghoe MW; Gebski V
    BMC Med Res Methodol; 2017 Apr; 17(1):52. PubMed ID: 28376736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample size calculations in the presence of competing risks.
    Latouche A; Porcher R
    Stat Med; 2007 Dec; 26(30):5370-80. PubMed ID: 17955563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.
    Geskus RB
    Biometrics; 2011 Mar; 67(1):39-49. PubMed ID: 20377575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating and testing for center effects in competing risks.
    Katsahian S; Boudreau C
    Stat Med; 2011 Jun; 30(13):1608-17. PubMed ID: 21341296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The number of subjects per variable required in linear regression analyses.
    Austin PC; Steyerberg EW
    J Clin Epidemiol; 2015 Jun; 68(6):627-36. PubMed ID: 25704724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates.
    Peduzzi P; Concato J; Feinstein AR; Holford TR
    J Clin Epidemiol; 1995 Dec; 48(12):1503-10. PubMed ID: 8543964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo methods in clinical research: applications in multivariable analysis.
    Concato J; Feinstein AR
    J Investig Med; 1997 Aug; 45(6):394-400. PubMed ID: 9291696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the Absolute Risk of Cardiovascular Disease and Other Events: Issues With the Use of Multiple Fine-Gray Subdistribution Hazard Models.
    Austin PC; Putter H; Lee DS; Steyerberg EW
    Circ Cardiovasc Qual Outcomes; 2022 Feb; 15(2):e008368. PubMed ID: 35098725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the use of time-varying covariates in the Fine-Gray subdistribution hazard competing risk regression model.
    Austin PC; Latouche A; Fine JP
    Stat Med; 2020 Jan; 39(2):103-113. PubMed ID: 31660633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods of competing risks flexible parametric modeling for estimation of the risk of the first disease among HIV infected men.
    Nouri S; Mahmoudi M; Mohammad K; Mansournia MA; Yaseri M; Akhtar-Danesh N
    BMC Med Res Methodol; 2020 Jan; 20(1):17. PubMed ID: 31996148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear variable selection in competing risks data.
    Ren X; Li S; Shen C; Yu Z
    Stat Med; 2018 Jun; 37(13):2134-2147. PubMed ID: 29579776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
    van Smeden M; de Groot JA; Moons KG; Collins GS; Altman DG; Eijkemans MJ; Reitsma JB
    BMC Med Res Methodol; 2016 Nov; 16(1):163. PubMed ID: 27881078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tree-based models for survival data with competing risks.
    Kretowska M
    Comput Methods Programs Biomed; 2018 Jun; 159():185-198. PubMed ID: 29650312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penalized variable selection in competing risks regression.
    Fu Z; Parikh CR; Zhou B
    Lifetime Data Anal; 2017 Jul; 23(3):353-376. PubMed ID: 27016934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy.
    Concato J; Peduzzi P; Holford TR; Feinstein AR
    J Clin Epidemiol; 1995 Dec; 48(12):1495-501. PubMed ID: 8543963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiparametric accelerated failure time cure rate mixture models with competing risks.
    Choi S; Zhu L; Huang X
    Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation shows undesirable results for competing risks analysis with time-dependent covariates for clinical outcomes.
    Poguntke I; Schumacher M; Beyersmann J; Wolkewitz M
    BMC Med Res Methodol; 2018 Jul; 18(1):79. PubMed ID: 30012114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdistribution hazard models for competing risks in discrete time.
    Berger M; Schmid M; Welchowski T; Schmitz-Valckenberg S; Beyersmann J
    Biostatistics; 2020 Jul; 21(3):449-466. PubMed ID: 30418529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.