These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28088594)

  • 21. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models.
    Austin PC; Steyerberg EW
    Stat Methods Med Res; 2017 Apr; 26(2):796-808. PubMed ID: 25411322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simulation study of the number of events per variable in logistic regression analysis.
    Peduzzi P; Concato J; Kemper E; Holford TR; Feinstein AR
    J Clin Epidemiol; 1996 Dec; 49(12):1373-9. PubMed ID: 8970487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data.
    Wynants L; Bouwmeester W; Moons KG; Moerbeek M; Timmerman D; Van Huffel S; Van Calster B; Vergouwe Y
    J Clin Epidemiol; 2015 Dec; 68(12):1406-14. PubMed ID: 25817942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis and design of randomised clinical trials involving competing risks endpoints.
    Tai BC; Wee J; Machin D
    Trials; 2011 May; 12():127. PubMed ID: 21595883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying time-varying cause-specific hazard and subdistribution hazard ratios with competing risks data.
    Diao G; Ibrahim JG
    Clin Trials; 2019 Aug; 16(4):363-374. PubMed ID: 31165631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Introduction to the Analysis of Survival Data in the Presence of Competing Risks.
    Austin PC; Lee DS; Fine JP
    Circulation; 2016 Feb; 133(6):601-9. PubMed ID: 26858290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the relation between the cause-specific hazard and the subdistribution rate for competing risks data: The Fine-Gray model revisited.
    Putter H; Schumacher M; van Houwelingen HC
    Biom J; 2020 May; 62(3):790-807. PubMed ID: 32128860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model selection in competing risks regression.
    Kuk D; Varadhan R
    Stat Med; 2013 Aug; 32(18):3077-88. PubMed ID: 23436643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysing multicentre competing risks data with a mixed proportional hazards model for the subdistribution.
    Katsahian S; Resche-Rigon M; Chevret S; Porcher R
    Stat Med; 2006 Dec; 25(24):4267-78. PubMed ID: 16960919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of delayed graft function on graft and patient survival in kidney transplantation: an approach using competing events analysis.
    Fonseca I; Teixeira L; Malheiro J; Martins LS; Dias L; Castro Henriques A; Mendonça D
    Transpl Int; 2015 Jun; 28(6):738-50. PubMed ID: 25689397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A full competing risk analysis of hospital-acquired infections can easily be performed by a case-cohort approach.
    Wolkewitz M; Palomar-Martinez M; Olaechea-Astigarraga P; Alvarez-Lerma F; Schumacher M
    J Clin Epidemiol; 2016 Jun; 74():187-93. PubMed ID: 26633600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure.
    Courvoisier DS; Combescure C; Agoritsas T; Gayet-Ageron A; Perneger TV
    J Clin Epidemiol; 2011 Sep; 64(9):993-1000. PubMed ID: 21411281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relaxing the rule of ten events per variable in logistic and Cox regression.
    Vittinghoff E; McCulloch CE
    Am J Epidemiol; 2007 Mar; 165(6):710-8. PubMed ID: 17182981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating sample size in the presence of competing risks - Cause-specific hazard or cumulative incidence approach?
    Tai BC; Chen ZJ; Machin D
    Stat Methods Med Res; 2018 Jan; 27(1):114-125. PubMed ID: 26711503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fine-Gray subdistribution hazard models to simultaneously estimate the absolute risk of different event types: Cumulative total failure probability may exceed 1.
    Austin PC; Steyerberg EW; Putter H
    Stat Med; 2021 Aug; 40(19):4200-4212. PubMed ID: 33969508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of the Cox model to the Fine-Gray model for survival analyses of re-fracture rates.
    Nolan EK; Chen HY
    Arch Osteoporos; 2020 Jun; 15(1):86. PubMed ID: 32519193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Misspecified regression model for the subdistribution hazard of a competing risk.
    Latouche A; Boisson V; Chevret S; Porcher R
    Stat Med; 2007 Feb; 26(5):965-74. PubMed ID: 16755533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parametric mixture models to evaluate and summarize hazard ratios in the presence of competing risks with time-dependent hazards and delayed entry.
    Lau B; Cole SR; Gange SJ
    Stat Med; 2011 Mar; 30(6):654-65. PubMed ID: 21337360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PSHREG: a SAS macro for proportional and nonproportional subdistribution hazards regression.
    Kohl M; Plischke M; Leffondré K; Heinze G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):218-33. PubMed ID: 25572709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cumulative incidence in competing risks data and competing risks regression analysis.
    Kim HT
    Clin Cancer Res; 2007 Jan; 13(2 Pt 1):559-65. PubMed ID: 17255278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.