BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 28088846)

  • 1. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.
    Kim C; Moon I; Lee D; Choi MS; Ahmed F; Nam S; Cho Y; Shin HJ; Park S; Yoo WJ
    ACS Nano; 2017 Feb; 11(2):1588-1596. PubMed ID: 28088846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect-Assisted Contact Property Enhancement in a Molybdenum Disulfide Monolayer.
    Chee SS; Lee JH; Lee K; Ham MH
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4129-4134. PubMed ID: 31880145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect Dominated Charge Transport and Fermi Level Pinning in MoS
    Bampoulis P; van Bremen R; Yao Q; Poelsema B; Zandvliet HJW; Sotthewes K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19278-19286. PubMed ID: 28508628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS
    Moon BH; Han GH; Kim H; Choi H; Bae JJ; Kim J; Jin Y; Jeong HY; Joo MK; Lee YH; Lim SC
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11240-11246. PubMed ID: 28266221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning.
    Nakaharai S; Yamamoto M; Ueno K; Tsukagoshi K
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14732-9. PubMed ID: 27203118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Contacts in Monolayer Arsenene Devices.
    Wang Y; Ye M; Weng M; Li J; Zhang X; Zhang H; Guo Y; Pan Y; Xiao L; Liu J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29273-29284. PubMed ID: 28783298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS
    Jang J; Kim Y; Chee SS; Kim H; Whang D; Kim GH; Yun SJ
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5031-5039. PubMed ID: 31891246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of S-Vacancies on the Charge Injection Barrier at the Electrical Contact with the MoS
    Bussolotti F; Yang J; Kawai H; Wong CPY; Goh KEJ
    ACS Nano; 2021 Feb; 15(2):2686-2697. PubMed ID: 33502172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Synthesized MoS
    Perini CJ; Basnet P; West MP; Vogel EM
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39860-39871. PubMed ID: 30350938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schottky Barrier Height Modulation Using Interface Characteristics of MoS
    Kim SH; Han KH; Kim GS; Kim SG; Kim J; Yu HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6230-6237. PubMed ID: 30663311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS
    Xie J; Patoary NM; Zhou G; Sayyad MY; Tongay S; Esqueda IS
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35172287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on Contact Properties of 2D van der Waals Semimetallic 1T-TiS
    Yoon H; Lee S; Seo J; Sohn I; Jun S; Hong S; Im S; Nam Y; Kim HJ; Lee Y; Chung SM; Kim H
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):12095-12105. PubMed ID: 38384197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Fermi Level Pinning at Physisorptive Sites of Moire-MoS
    Zhang Z; Guo Y; Robertson J
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11903-11909. PubMed ID: 35220717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS
    Chee SS; Seo D; Kim H; Jang H; Lee S; Moon SP; Lee KH; Kim SW; Choi H; Ham MH
    Adv Mater; 2019 Jan; 31(2):e1804422. PubMed ID: 30411825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fermi-Level-Pinning-Free 1D Electrical Contact at the Intrinsic 2D MoS
    Yang Z; Kim C; Lee KY; Lee M; Appalakondaiah S; Ra CH; Watanabe K; Taniguchi T; Cho K; Hwang E; Hone J; Yoo WJ
    Adv Mater; 2019 Jun; 31(25):e1808231. PubMed ID: 31066475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides.
    Sotthewes K; van Bremen R; Dollekamp E; Boulogne T; Nowakowski K; Kas D; Zandvliet HJW; Bampoulis P
    J Phys Chem C Nanomater Interfaces; 2019 Mar; 123(9):5411-5420. PubMed ID: 30873255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow Schottky Barrier Height Achieved by Using Molybdenum Disulfide/Dielectric Stack for Source/Drain Contact.
    Kim SH; Han KH; Park E; Kim SG; Yu HY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34084-34090. PubMed ID: 31429263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new insight for ohmic contacts to MoS
    Wang Q; Deng B; Shi X
    Phys Chem Chem Phys; 2017 Oct; 19(38):26151-26157. PubMed ID: 28930321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D SnSe-based vdW heterojunctions: tuning the Schottky barrier by reducing Fermi level pinning.
    Zhou W; Guo Y; Liu J; Wang FQ; Li X; Wang Q
    Nanoscale; 2018 Jul; 10(28):13767-13772. PubMed ID: 29995035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.