These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2808909)
1. Difference limens for phase in normal and hearing-impaired subjects. Moore BC; Glasberg BR J Acoust Soc Am; 1989 Oct; 86(4):1351-65. PubMed ID: 2808909 [TBL] [Abstract][Full Text] [Related]
2. Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number? Bernstein JG; Oxenham AJ J Acoust Soc Am; 2003 Jun; 113(6):3323-34. PubMed ID: 12822804 [TBL] [Abstract][Full Text] [Related]
3. Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. Moore BC; Peters RW J Acoust Soc Am; 1992 May; 91(5):2881-93. PubMed ID: 1629481 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects. Moore BC; Moore GA Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610 [TBL] [Abstract][Full Text] [Related]
5. Frequency and intensity difference limens for harmonics within complex tones. Moore BC; Glasberg BR; Shailer MJ J Acoust Soc Am; 1984 Feb; 75(2):550-61. PubMed ID: 6699293 [TBL] [Abstract][Full Text] [Related]
6. The identification of vowel-like harmonic complexes: effects of component phase, level, and fundamental frequency. Alcántara JI; Moore BC J Acoust Soc Am; 1995 Jun; 97(6):3813-24. PubMed ID: 7790659 [TBL] [Abstract][Full Text] [Related]
7. The relationship between frequency selectivity and pitch discrimination: effects of stimulus level. Bernstein JG; Oxenham AJ J Acoust Soc Am; 2006 Dec; 120(6):3916-28. PubMed ID: 17225419 [TBL] [Abstract][Full Text] [Related]
8. Thresholds for hearing mistuned partials as separate tones in harmonic complexes. Moore BC; Glasberg BR; Peters RW J Acoust Soc Am; 1986 Aug; 80(2):479-83. PubMed ID: 3745680 [TBL] [Abstract][Full Text] [Related]
9. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. Cariani PA; Delgutte B J Neurophysiol; 1996 Sep; 76(3):1717-34. PubMed ID: 8890287 [TBL] [Abstract][Full Text] [Related]
10. An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination. Bernstein JG; Oxenham AJ J Acoust Soc Am; 2005 Jun; 117(6):3816-31. PubMed ID: 16018484 [TBL] [Abstract][Full Text] [Related]
11. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees. Vandali A; Sly D; Cowan R; van Hoesel R Hear Res; 2013 Aug; 302():32-49. PubMed ID: 23685148 [TBL] [Abstract][Full Text] [Related]
12. Pitch perception of concurrent harmonic tones with overlapping spectra. Wang J; Baer T; Glasberg BR; Stone MA; Ye D; Moore BC J Acoust Soc Am; 2012 Jul; 132(1):339-56. PubMed ID: 22779482 [TBL] [Abstract][Full Text] [Related]
13. Dominance of missing fundamental versus spectrally cued pitch: individual differences for complex tones with unresolved harmonics. Renken R; Wiersinga-Post JE; Tomaskovic S; Duifhuis H J Acoust Soc Am; 2004 May; 115(5 Pt 1):2257-63. PubMed ID: 15139636 [TBL] [Abstract][Full Text] [Related]
14. Influence of spectral locus and F0 changes on the pitch and timbre of complex tones. Singh PG; Hirsh IJ J Acoust Soc Am; 1992 Nov; 92(5):2650-61. PubMed ID: 1479128 [TBL] [Abstract][Full Text] [Related]
15. Implications of within-fiber temporal coding for perceptual studies of F0 discrimination and discrimination of harmonic and inharmonic tone complexes. Kale S; Micheyl C; Heinz MG J Assoc Res Otolaryngol; 2014 Jun; 15(3):465-82. PubMed ID: 24658856 [TBL] [Abstract][Full Text] [Related]
16. The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. Shackleton TM; Carlyon RP J Acoust Soc Am; 1994 Jun; 95(6):3529-40. PubMed ID: 8046144 [TBL] [Abstract][Full Text] [Related]
17. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase. Miyazono H; Glasberg BR; Moore BC J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897 [TBL] [Abstract][Full Text] [Related]
18. Frequency difference limens of pure tones and harmonics within complex stimuli in Mongolian gerbils and humans. Klinge A; Klump GM J Acoust Soc Am; 2009 Jan; 125(1):304-14. PubMed ID: 19173417 [TBL] [Abstract][Full Text] [Related]
19. Effects of harmonic content on complex-tone fundamental-frequency discrimination in hearing-impaired listeners. Arehart KH J Acoust Soc Am; 1994 Jun; 95(6):3574-85. PubMed ID: 8046147 [TBL] [Abstract][Full Text] [Related]
20. Further evidence that fundamental-frequency difference limens measure pitch discrimination. Micheyl C; Ryan CM; Oxenham AJ J Acoust Soc Am; 2012 May; 131(5):3989-4001. PubMed ID: 22559372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]