These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28089177)
1. Cell cycle-dependent positive and negative functions of Fun30 chromatin remodeler in DNA damage response. Siler J; Xia B; Wong C; Kath M; Bi X DNA Repair (Amst); 2017 Feb; 50():61-70. PubMed ID: 28089177 [TBL] [Abstract][Full Text] [Related]
2. Functions of Fun30 chromatin remodeler in regulating cellular resistance to genotoxic stress. Bi X; Yu Q; Siler J; Li C; Khan A PLoS One; 2015; 10(3):e0121341. PubMed ID: 25806814 [TBL] [Abstract][Full Text] [Related]
3. Fun30 chromatin remodeler helps in dealing with torsional stress and camptothecin-induced DNA damage. Al-Natour Z; Chalissery J; Hassan AH Yeast; 2021 Feb; 38(2):170-182. PubMed ID: 33141948 [TBL] [Abstract][Full Text] [Related]
4. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Eapen VV; Sugawara N; Tsabar M; Wu WH; Haber JE Mol Cell Biol; 2012 Nov; 32(22):4727-40. PubMed ID: 23007155 [TBL] [Abstract][Full Text] [Related]
5. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Chen X; Cui D; Papusha A; Zhang X; Chu CD; Tang J; Chen K; Pan X; Ira G Nature; 2012 Sep; 489(7417):576-80. PubMed ID: 22960743 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Chen X; Niu H; Yu Y; Wang J; Zhu S; Zhou J; Papusha A; Cui D; Pan X; Kwon Y; Sung P; Ira G Nucleic Acids Res; 2016 Apr; 44(6):2742-53. PubMed ID: 26801641 [TBL] [Abstract][Full Text] [Related]
7. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Costelloe T; Louge R; Tomimatsu N; Mukherjee B; Martini E; Khadaroo B; Dubois K; Wiegant WW; Thierry A; Burma S; van Attikum H; Llorente B Nature; 2012 Sep; 489(7417):581-4. PubMed ID: 22960744 [TBL] [Abstract][Full Text] [Related]
8. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection. Bantele SC; Ferreira P; Gritenaite D; Boos D; Pfander B Elife; 2017 Jan; 6():. PubMed ID: 28063255 [TBL] [Abstract][Full Text] [Related]
9. Cellular morphogenesis under stress is influenced by the sphingolipid pathway gene ISC1 and DNA integrity checkpoint genes in Saccharomyces cerevisiae. Tripathi K; Matmati N; Zheng WJ; Hannun YA; Mohanty BK Genetics; 2011 Oct; 189(2):533-47. PubMed ID: 21840863 [TBL] [Abstract][Full Text] [Related]
10. Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage. Cordón-Preciado V; Ufano S; Bueno A Nucleic Acids Res; 2006; 34(20):5852-62. PubMed ID: 17062626 [TBL] [Abstract][Full Text] [Related]
11. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae. Conde F; Ontoso D; Acosta I; Gallego-Sánchez A; Bueno A; San-Segundo PA DNA Repair (Amst); 2010 Oct; 9(10):1038-49. PubMed ID: 20674515 [TBL] [Abstract][Full Text] [Related]
12. Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1. Conde F; San-Segundo PA Genetics; 2008 Jul; 179(3):1197-210. PubMed ID: 18562671 [TBL] [Abstract][Full Text] [Related]
13. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways. DeMase D; Zeng L; Cera C; Fasullo M DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838 [TBL] [Abstract][Full Text] [Related]
14. Fun30 and Rtt109 Mediate Epigenetic Regulation of the DNA Damage Response Pathway in Maurya PK; Garai P; Goel K; Bhatt H; Dutta A; Goyal A; Dewasthale S; Gupta M; Haokip DT; Barik S; Muthuswami R J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736042 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. Fasullo M; Dong Z; Sun M; Zeng L DNA Repair (Amst); 2005 Nov; 4(11):1240-51. PubMed ID: 16039914 [TBL] [Abstract][Full Text] [Related]
16. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Tercero JA; Diffley JF Nature; 2001 Aug; 412(6846):553-7. PubMed ID: 11484057 [TBL] [Abstract][Full Text] [Related]
17. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks. Dibitetto D; Ferrari M; Rawal CC; Balint A; Kim T; Zhang Z; Smolka MB; Brown GW; Marini F; Pellicioli A Nucleic Acids Res; 2016 Jan; 44(2):669-82. PubMed ID: 26490958 [TBL] [Abstract][Full Text] [Related]
18. Functional and physical interactions between yeast 14-3-3 proteins, acetyltransferases, and deacetylases in response to DNA replication perturbations. Lottersberger F; Panza A; Lucchini G; Longhese MP Mol Cell Biol; 2007 May; 27(9):3266-81. PubMed ID: 17339336 [TBL] [Abstract][Full Text] [Related]
19. Disruption of SUMO-targeted ubiquitin ligases Slx5-Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells. Böhm S; Mihalevic MJ; Casal MA; Bernstein KA DNA Repair (Amst); 2015 Feb; 26():1-14. PubMed ID: 25588990 [TBL] [Abstract][Full Text] [Related]
20. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Huang D; Piening BD; Paulovich AG Mol Cell Biol; 2013 Apr; 33(8):1515-27. PubMed ID: 23382077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]