These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A pitfall of using the circular-edge technique with image averaging for spatial resolution measurement in iteratively reconstructed CT images. Narita A; Ohkubo M J Appl Clin Med Phys; 2020 Feb; 21(2):144-151. PubMed ID: 31957969 [TBL] [Abstract][Full Text] [Related]
3. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Richard S; Husarik DB; Yadava G; Murphy SN; Samei E Med Phys; 2012 Jul; 39(7):4115-22. PubMed ID: 22830744 [TBL] [Abstract][Full Text] [Related]
4. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Klink T; Obmann V; Heverhagen J; Stork A; Adam G; Begemann P Eur J Radiol; 2014 Sep; 83(9):1645-54. PubMed ID: 25037931 [TBL] [Abstract][Full Text] [Related]
5. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods. Chen B; Christianson O; Wilson JM; Samei E Med Phys; 2014 Jul; 41(7):071909. PubMed ID: 24989387 [TBL] [Abstract][Full Text] [Related]
6. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions. Brunner CC; Stern SH; Minniti R; Parry MI; Skopec M; Chakrabarti K Med Phys; 2013 Aug; 40(8):081917. PubMed ID: 23927331 [TBL] [Abstract][Full Text] [Related]
7. Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Urikura A; Ichikawa K; Hara T; Nishimaru E; Nakaya Y Radiol Phys Technol; 2014 Jul; 7(2):358-66. PubMed ID: 24880960 [TBL] [Abstract][Full Text] [Related]
8. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique. McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595 [TBL] [Abstract][Full Text] [Related]
9. A method for determining the modulation transfer function from thick microwire profiles measured with x-ray microcomputed tomography. Nakaya Y; Kawata Y; Niki N; Umetatni K; Ohmatsu H; Moriyama N Med Phys; 2012 Jul; 39(7):4347-64. PubMed ID: 22830768 [TBL] [Abstract][Full Text] [Related]
10. Spatial resolution compensation by adjusting the reconstruction kernels for iterative reconstruction images of computed tomography. Sugisawa K; Ichikawa K; Urikura A; Minamishima K; Masuda S; Hoshino T; Nakahara A; Yamada Y; Jinzaki M Phys Med; 2020 Jun; 74():47-55. PubMed ID: 32408219 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Samei E; Richard S Med Phys; 2015 Jan; 42(1):314-23. PubMed ID: 25563271 [TBL] [Abstract][Full Text] [Related]
12. Isotope independent determination of PET/CT modulation transfer functions from phantom measurements on spheres. Prenosil GA; Klaeser B; Hentschel M; Fürstner M; Berndt M; Krause T; Weitzel T Med Phys; 2016 Oct; 43(10):5767. PubMed ID: 27782715 [TBL] [Abstract][Full Text] [Related]
13. Task-specific spatial resolution properties of iterative and deep learning-based reconstructions in computed tomography: Comparison using tasks assuming small and large enhanced vessels. Matsuura K; Ichikawa K; Kawashima H Phys Med; 2022 Mar; 95():64-72. PubMed ID: 35123172 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a commercial hybrid iterative and model-based reconstruction algorithm in radiation oncology. Price RG; Vance S; Cattaneo R; Schultz L; Elshaikh MA; Chetty IJ; Glide-Hurst CK Med Phys; 2014 Aug; 41(8):081907. PubMed ID: 25086538 [TBL] [Abstract][Full Text] [Related]
15. Ultra-low peak voltage CT colonography: effect of iterative reconstruction algorithms on performance of radiologists who use anthropomorphic colonic phantoms. Shin CI; Kim SH; Lee ES; Lee DH; Hwang EJ; Chung SY; Lee JM; Han JK; Choi BI Radiology; 2014 Dec; 273(3):759-71. PubMed ID: 25010640 [TBL] [Abstract][Full Text] [Related]
16. Task-based assessment of resolution properties of CT images with a new index using deep convolutional neural network. Hayashi A; Fukui R; Kamioka S; Yokomachi K; Fujioka C; Nishimaru E; Kiguchi M; Shiraishi J Radiol Phys Technol; 2024 Mar; 17(1):83-92. PubMed ID: 37930564 [TBL] [Abstract][Full Text] [Related]
18. Tilted-wire method for measuring resolution properties of CT images under extremely low-contrast and high-noise conditions. Tominaga C; Azumi H; Goto M; Taura M; Homma N; Mori I Radiol Phys Technol; 2018 Jun; 11(2):125-137. PubMed ID: 29476396 [TBL] [Abstract][Full Text] [Related]
19. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR). Chen B; Barnhart H; Richard S; Robins M; Colsher J; Samei E Med Phys; 2013 Nov; 40(11):111902. PubMed ID: 24320435 [TBL] [Abstract][Full Text] [Related]
20. Dose reduction in computed tomography of the chest: image quality of iterative reconstructions at a 50% radiation dose compared to filtered back projection at a 100% radiation dose. May MS; Eller A; Stahl C; Wuest W; Scharf M; Hammon M; Dankerl P; Schlechtweg PM; Allmendinger T; Sedlmair M; Schmidt B; Uder M; Lell MM Rofo; 2014 Jun; 186(6):576-84. PubMed ID: 24477504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]