These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28089390)

  • 61. Characterization of the medial surface of the vocal folds.
    Berry DA; Clark MJ; Montequin DW; Titze IR
    Ann Otol Rhinol Laryngol; 2001 May; 110(5 Pt 1):470-7. PubMed ID: 11372933
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Function of the interarytenoid(IA) muscle in phonation: in vivo laryngeal model.
    Choi HS; Ye M; Berke GS
    Yonsei Med J; 1995 Mar; 36(1):58-67. PubMed ID: 7740837
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Three-dimensional vocal fold structural change due to implant insertion in medialization laryngoplasty.
    Zhang Z; Wu L; Gray R; Chhetri DK
    PLoS One; 2020; 15(1):e0228464. PubMed ID: 31999758
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biomechanics of arytenoid adduction surgery in an ex vivo canine model.
    Noordzij JP; Perrault DF; Woo P
    Ann Otol Rhinol Laryngol; 1998 Jun; 107(6):454-61. PubMed ID: 9635454
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
    Regner MF; Tao C; Ying D; Olszewski A; Zhang Y; Jiang JJ
    J Voice; 2012 Nov; 26(6):698-705. PubMed ID: 22578437
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Glottal closure in the hemiparalyzed canine larynx.
    Regenbogen E
    Laryngoscope; 1989 Jul; 99(7 Pt 1):711-5. PubMed ID: 2747394
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A three-dimensional model of vocal fold abduction/adduction.
    Hunter EJ; Titze IR; Alipour F
    J Acoust Soc Am; 2004 Apr; 115(4):1747-59. PubMed ID: 15101653
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chronic intermittent stimulation of the thyroarytenoid muscle maintains dynamic control of glottal adduction.
    Ludlow CL; Bielamowicz S; Daniels Rosenberg M; Ambalavanar R; Rossini K; Gillespie M; Hampshire V; Testerman R; Erickson D; Carraro U
    Muscle Nerve; 2000 Jan; 23(1):44-57. PubMed ID: 10590405
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of cricothyroid muscle action on the relation between subglottal pressure and fundamental frequency in an in vivo canine model.
    Hsiao TY; Liu CM; Luschei ES; Titze IR
    J Voice; 2001 Jun; 15(2):187-93. PubMed ID: 11411473
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An Euler-Bernoulli-Type Beam Model of the Vocal Folds for Describing Curved and Incomplete Glottal Closure Patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    ArXiv; 2023 Jul; ():. PubMed ID: 37461411
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glottal airflow resistance in excised pig, sheep, and cow larynges.
    Alipour F; Jaiswal S
    J Voice; 2009 Jan; 23(1):40-50. PubMed ID: 18023324
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new paramedian approach to arytenoid adduction and strap muscle transposition for vocal fold medialization.
    Su CY; Lui CC; Lin HC; Chiu JF; Cheng CA
    Laryngoscope; 2002 Feb; 112(2):342-50. PubMed ID: 11889395
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Features of Vocal Fold Adductor Paralysis and the Management of Posterior Muscle in Thyroplasty.
    Konomi U; Tokashiki R; Hiramatsu H; Motohashi R; Sakurai E; Toyomura F; Nomoto M; Kawada Y; Suzuki M
    J Voice; 2016 Mar; 30(2):234-41. PubMed ID: 26183535
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx.
    Geng B; Movahhedi M; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Aug; 150(2):1176. PubMed ID: 34470336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.