These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 28089397)
21. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety. Terazono A; Oguchi M; Iino S; Mogi S Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742 [TBL] [Abstract][Full Text] [Related]
22. Scrap automotive electronics: A mini-review of current management practices. Cucchiella F; D'Adamo I; Rosa P; Terzi S Waste Manag Res; 2016 Jan; 34(1):3-10. PubMed ID: 26467318 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals. Fang S; Tao T; Cao H; He M; Zeng X; Ning P; Zhao H; Wu M; Zhang Y; Sun Z Waste Manag; 2019 Apr; 89():212-223. PubMed ID: 31079734 [TBL] [Abstract][Full Text] [Related]
24. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review. Akcil A; Erust C; Gahan CS; Ozgun M; Sahin M; Tuncuk A Waste Manag; 2015 Nov; 45():258-71. PubMed ID: 25704926 [TBL] [Abstract][Full Text] [Related]
25. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste. Xue M; Yan G; Li J; Xu Z Environ Sci Technol; 2012 Oct; 46(19):10556-63. PubMed ID: 22924535 [TBL] [Abstract][Full Text] [Related]
26. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review. Awasthi AK; Zlamparet GI; Zeng X; Li J Waste Manag Res; 2017 Apr; 35(4):346-356. PubMed ID: 28097947 [TBL] [Abstract][Full Text] [Related]
27. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305 [TBL] [Abstract][Full Text] [Related]
28. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS. Torrance KW; Keenan HE; Hursthouse AS; Stirling D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):471-5. PubMed ID: 20390892 [TBL] [Abstract][Full Text] [Related]
29. Separation and concentration of valuable and critical materials from wasted LEDs by physical processes. Cenci MP; Dal Berto FC; Camargo PSS; Veit HM Waste Manag; 2021 Feb; 120():136-145. PubMed ID: 33302016 [TBL] [Abstract][Full Text] [Related]
30. Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones. Andrade DF; Castro JP; Garcia JA; Machado RC; Pereira-Filho ER; Amarasiriwardena D Chemosphere; 2022 Jan; 286(Pt 2):131739. PubMed ID: 34371353 [TBL] [Abstract][Full Text] [Related]
31. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper. Ventura E; Futuro A; Pinho SC; Almeida MF; Dias JM J Environ Manage; 2018 Oct; 223():297-305. PubMed ID: 29935444 [TBL] [Abstract][Full Text] [Related]
32. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article. Vats MC; Singh SK Waste Manag; 2015 Nov; 45():280-8. PubMed ID: 26112260 [TBL] [Abstract][Full Text] [Related]
33. Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. Kim M; Jang YC; Lee S J Environ Manage; 2013 Oct; 128():941-8. PubMed ID: 23892135 [TBL] [Abstract][Full Text] [Related]
34. Mechanical recycling of waste electric and electronic equipment: a review. Cui J; Forssberg E J Hazard Mater; 2003 May; 99(3):243-63. PubMed ID: 12758010 [TBL] [Abstract][Full Text] [Related]
35. Precious and critical metals from wasted LED lamps: characterization and evaluation. Cenci MP; Dal Berto FC; Castillo BW; Veit HM Environ Technol; 2022 May; 43(12):1870-1881. PubMed ID: 33241733 [TBL] [Abstract][Full Text] [Related]
36. Influence of impurities on the performances of HIPS recycled from Waste Electric and Electronic Equipment (WEEE). Perrin D; Mantaux O; Ienny P; Léger R; Dumon M; Lopez-Cuesta JM Waste Manag; 2016 Oct; 56():438-45. PubMed ID: 27425861 [TBL] [Abstract][Full Text] [Related]
37. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review. Zheng K; Benedetti MF; van Hullebusch ED J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794 [TBL] [Abstract][Full Text] [Related]
38. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Yamane LH; de Moraes VT; Espinosa DC; Tenório JA Waste Manag; 2011 Dec; 31(12):2553-8. PubMed ID: 21820883 [TBL] [Abstract][Full Text] [Related]
39. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Ardente F; Latunussa CEL; Blengini GA Waste Manag; 2019 May; 91():156-167. PubMed ID: 31203937 [TBL] [Abstract][Full Text] [Related]
40. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Schlummer M; Gruber L; Mäurer A; Wolz G; van Eldik R Chemosphere; 2007 Apr; 67(9):1866-76. PubMed ID: 17207844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]