These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28089512)

  • 21. Traits and evolution of wing venation pattern in paraneopteran insects.
    Nel A; Prokop J; Nel P; Grandcolas P; Huang DY; Roques P; Guilbert E; Dostál O; Szwedo J
    J Morphol; 2012 May; 273(5):480-506. PubMed ID: 22162020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the morphology of the Late Paleozoic insect families Bardohymenidae and Aspidothoracidae (Palaeodictyopterida: Megasecoptera).
    Pecharová M; Sinitshenkova ND; Prokop J
    Arthropod Struct Dev; 2020 Mar; 55():100916. PubMed ID: 32179420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures.
    Tomoyasu Y
    Curr Opin Genet Dev; 2021 Aug; 69():48-55. PubMed ID: 33647834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient use of hemolymph for hydraulic wing expansion in cicadas.
    Salcedo MK; Ellis TE; Sáenz ÁS; Lu J; Worrell T; Madigan ML; Socha JJ
    Sci Rep; 2023 Apr; 13(1):6298. PubMed ID: 37072416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta).
    Jacquelin L; Desutter-Grandcolas L; Chintauan-Marquier I; Boistel R; Zheng D; Prokop J; Nel A
    Sci Rep; 2018 Jan; 8(1):238. PubMed ID: 29321486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolution of insect wings and their sensory apparatus.
    Dickinson MH; Hannaford S; Palka J
    Brain Behav Evol; 1997 Jul; 50(1):13-24. PubMed ID: 9209763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae).
    Willkommen J; Hörnschemeyer T
    Arthropod Struct Dev; 2007 Jun; 36(2):253-69. PubMed ID: 18089104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A twig-like insect stuck in the Permian mud indicates early origin of an ecological strategy in Hexapoda evolution.
    Logghe A; Nel A; Steyer JS; Ngô-Muller V; Pouillon JM; Garrouste R
    Sci Rep; 2021 Oct; 11(1):20774. PubMed ID: 34675246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality.
    Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior.
    Thomas MA; Walsh KA; Wolf MR; McPheron BA; Marden JH
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13178-83. PubMed ID: 11078507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins and Specification of the Drosophila Wing.
    Requena D; Álvarez JA; Gabilondo H; Loker R; Mann RS; Estella C
    Curr Biol; 2017 Dec; 27(24):3826-3836.e5. PubMed ID: 29225023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Male postabdomen reveals ancestral traits of Megasecoptera among winged insects.
    Prokop J; Pecharová M; Sinitshenkova ND; Klass KD
    Arthropod Struct Dev; 2020 Jul; 57():100944. PubMed ID: 32361571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary origin of insect wings from ancestral gills.
    Averof M; Cohen SM
    Nature; 1997 Feb; 385(6617):627-30. PubMed ID: 9024659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homology of the wing base sclerites in Ephemeroptera (Insecta: Pterygota) - a reply to Willkommen and Hörnschemeyer.
    Yoshizawa K; Ninomiya T
    Arthropod Struct Dev; 2007 Sep; 36(3):277-9. PubMed ID: 18089106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DrawWing, a program for numerical description of insect wings.
    Tofilski A
    J Insect Sci; 2004; 4():17. PubMed ID: 15861233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva.
    Haug JT; Labandeira CC; Santiago-Blay JA; Haug C; Brown S
    BMC Evol Biol; 2015 Sep; 15():208. PubMed ID: 26416251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect.
    Knecht RJ; Engel MS; Benner JS
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6515-9. PubMed ID: 21464315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods.
    Fisher CR; Kratovil JD; Angelini DR; Jockusch EL
    Proc Biol Sci; 2021 Dec; 288(1965):20211808. PubMed ID: 34933597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.