These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28089726)

  • 1. HNE and cholesterol oxidation products in colorectal inflammation and carcinogenesis.
    Rossin D; Calfapietra S; Sottero B; Poli G; Biasi F
    Free Radic Biol Med; 2017 Oct; 111():186-195. PubMed ID: 28089726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer.
    Guéraud F
    Free Radic Biol Med; 2017 Oct; 111():196-208. PubMed ID: 28065782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Oxidation Products in the Pathogenesis of Inflammation-related Gut Diseases.
    Sottero B; Rossin D; Poli G; Biasi F
    Curr Med Chem; 2018; 25(11):1311-1326. PubMed ID: 28625152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer growth regulation by 4-hydroxynonenal.
    Gasparovic AC; Milkovic L; Sunjic SB; Zarkovic N
    Free Radic Biol Med; 2017 Oct; 111():226-234. PubMed ID: 28131901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Proinflammatory Pathways in the Pathogenesis of Colitis-Associated Colorectal Cancer.
    Luo C; Zhang H
    Mediators Inflamm; 2017; 2017():5126048. PubMed ID: 28852270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells.
    Serra G; Incani A; Serreli G; Porru L; Melis MP; Tuberoso CIG; Rossin D; Biasi F; Deiana M
    Redox Biol; 2018 Jul; 17():348-354. PubMed ID: 29793168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization.
    Gargiulo S; Testa G; Gamba P; Staurenghi E; Poli G; Leonarduzzi G
    Free Radic Biol Med; 2017 Oct; 111():140-150. PubMed ID: 28057601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development.
    Azer SA
    Eur J Gastroenterol Hepatol; 2013 Mar; 25(3):271-81. PubMed ID: 23169309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mast cells and inflammation-associated colorectal carcinogenesis.
    Tanaka T; Ishikawa H
    Semin Immunopathol; 2013 Mar; 35(2):245-54. PubMed ID: 22993030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammatory pathways in the early steps of colorectal cancer development.
    Mariani F; Sena P; Roncucci L
    World J Gastroenterol; 2014 Aug; 20(29):9716-31. PubMed ID: 25110410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GFI1 downregulation promotes inflammation-linked metastasis of colorectal cancer.
    Xing W; Xiao Y; Lu X; Zhu H; He X; Huang W; Lopez ES; Wong J; Ju H; Tian L; Zhang F; Xu H; Wang SD; Li X; Karin M; Ren H
    Cell Death Differ; 2017 May; 24(5):929-943. PubMed ID: 28387757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development.
    Waldner MJ; Neurath MF
    Semin Immunol; 2014 Feb; 26(1):75-9. PubMed ID: 24447345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of oxysterols in chronic inflammatory human diseases.
    Testa G; Rossin D; Poli G; Biasi F; Leonarduzzi G
    Biochimie; 2018 Oct; 153():220-231. PubMed ID: 29894701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer.
    Zou F; Mao R; Yang L; Lin S; Lei K; Zheng Y; Ding Y; Zhang P; Cai G; Liang X; Liu J
    FEBS J; 2016 Apr; 283(8):1438-52. PubMed ID: 26859226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2.
    Timucin AC; Basaga H
    Free Radic Biol Med; 2017 Oct; 111():209-218. PubMed ID: 27840321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorectal cancer mouse models: integrating inflammation and the stroma.
    Ernst M; Ramsay RG
    J Gastroenterol Hepatol; 2012 Jan; 27(1):39-50. PubMed ID: 22188027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology.
    Andersen V; Svenningsen K; Knudsen LA; Hansen AK; Holmskov U; Stensballe A; Vogel U
    World J Gastroenterol; 2015 Nov; 21(41):11862-76. PubMed ID: 26557010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNAs and Inflammation in Colorectal Cancer.
    Josse C; Bours V
    Adv Exp Med Biol; 2016; 937():53-69. PubMed ID: 27573894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory and redox reactions in colorectal carcinogenesis.
    Guina T; Biasi F; Calfapietra S; Nano M; Poli G
    Ann N Y Acad Sci; 2015 Mar; 1340():95-103. PubMed ID: 25727454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis.
    Xue X; Ramakrishnan SK; Weisz K; Triner D; Xie L; Attili D; Pant A; Győrffy B; Zhan M; Carter-Su C; Hardiman KM; Wang TD; Dame MK; Varani J; Brenner D; Fearon ER; Shah YM
    Cell Metab; 2016 Sep; 24(3):447-461. PubMed ID: 27546461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.