BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28089775)

  • 1. Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model.
    Kuehn S; Hurst J; Rensinghoff F; Tsai T; Grauthoff S; Satgunarajah Y; Dick HB; Schnichels S; Joachim SC
    Exp Eye Res; 2017 Feb; 155():107-120. PubMed ID: 28089775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iNOS-inhibitor driven neuroprotection in a porcine retina organ culture model.
    Hurst J; Mueller-Buehl AM; Hofmann L; Kuehn S; Herms F; Schnichels S; Joachim SC
    J Cell Mol Med; 2020 Apr; 24(7):4312-4323. PubMed ID: 32130787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diminished apoptosis in hypoxic porcine retina explant cultures through hypothermia.
    Maliha AM; Kuehn S; Hurst J; Herms F; Fehr M; Bartz-Schmidt KU; Dick HB; Joachim SC; Schnichels S
    Sci Rep; 2019 Mar; 9(1):4898. PubMed ID: 30894574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-Satropane Prevents Retinal Neuron Damage by Attenuating Cell Apoptosis and Aβ Production via Activation of M1 Muscarinic Acetylcholine Receptor.
    Yu P; Zhou W; Liu L; Tang YB; Song Y; Lu JJ; Hou LN; Chen HZ; Cui YY
    Curr Eye Res; 2017 Sep; 42(9):1319-1326. PubMed ID: 28632409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxic Processes Induce Complement Activation via Classical Pathway in Porcine Neuroretinas.
    Mueller-Buehl AM; Buehner T; Pfarrer C; Deppe L; Peters L; Dick BH; Joachim SC
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration-Dependent Inner Retina Layer Damage and Optic Nerve Degeneration in a NMDA Model.
    Kuehn S; Rodust C; Stute G; Grotegut P; Meißner W; Reinehr S; Dick HB; Joachim SC
    J Mol Neurosci; 2017 Dec; 63(3-4):283-299. PubMed ID: 28963708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration.
    Ju WK; Shim MS; Kim KY; Bu JH; Park TL; Ahn S; Weinreb RN
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2639-2645. PubMed ID: 30107910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.
    Trost A; Motloch K; Bruckner D; Schroedl F; Bogner B; Kaser-Eichberger A; Runge C; Strohmaier C; Klein B; Aigner L; Reitsamer HA
    Exp Eye Res; 2015 Jul; 136():59-71. PubMed ID: 26001526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravitreal triamcinolone acetonide, retinal microglia and retinal ganglion cell apoptosis in the optic nerve crush model.
    Wang J; Chen S; Zhang X; Huang W; Jonas JB
    Acta Ophthalmol; 2016 Aug; 94(5):e305-11. PubMed ID: 25708663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel porcine
    Hurst J; Kuehn S; Jashari A; Tsai T; Bartz-Schmidt KU; Schnichels S; Joachim SC
    Altern Lab Anim; 2017 Mar; 45(1):11-25. PubMed ID: 28409994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion.
    Ebneter A; Kokona D; Schneider N; Zinkernagel MS
    Invest Ophthalmol Vis Sci; 2017 Feb; 58(2):944-953. PubMed ID: 28170538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of the extremolytes ectoine and hydroxyectoine in a porcine organ culture.
    Tsai T; Mueller-Buehl AM; Satgunarajah Y; Kuehn S; Dick HB; Joachim SC
    Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2185-2203. PubMed ID: 32710140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective action of erythropoietin on neuronal damage induced by activated microglia.
    Wenker SD; Chamorro ME; Vittori DC; Nesse AB
    FEBS J; 2013 Apr; 280(7):1630-42. PubMed ID: 23384249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin Protects Retinal Cells in Diabetic Rats Through Upregulating ZnT8 via Activating ERK Pathway and Inhibiting HIF-1α Expression.
    Xu G; Kang D; Zhang C; Lou H; Sun C; Yang Q; Lu L; Xu GT; Zhang J; Wang F
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8166-78. PubMed ID: 26720469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide treatment reduces microglial activation in the ischemic rat retina.
    Ulbrich F; Goebel U; Böhringer D; Charalambous P; Lagrèze WA; Biermann J
    Graefes Arch Clin Exp Ophthalmol; 2016 Oct; 254(10):1967-1976. PubMed ID: 27443355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells: involvement of muscarinic receptors and HIF-1 alpha pathway.
    Zhu X; Zhou W; Cui Y; Zhu L; Li J; Feng X; Shao B; Qi H; Zheng J; Wang H; Chen H
    Cell Mol Neurobiol; 2010 Apr; 30(3):427-35. PubMed ID: 19816768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride.
    del Olmo-Aguado S; Núñez-Álvarez C; Ji D; Manso AG; Osborne NN
    Brain Res Bull; 2013 Sep; 98():132-44. PubMed ID: 23978538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration.
    Scholz R; Caramoy A; Bhuckory MB; Rashid K; Chen M; Xu H; Grimm C; Langmann T
    J Neuroinflammation; 2015 Nov; 12():201. PubMed ID: 26527153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-induced vascular endothelial growth factor secretion by retinal pigment epithelial cells is inhibited by melatonin via decreased accumulation of hypoxia-inducible factors-1α protein.
    Lai YH; Hu DN; Rosen R; Sassoon J; Chuang LY; Wu KY; Wu WC
    Clin Exp Ophthalmol; 2017 Mar; 45(2):182-191. PubMed ID: 27409056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury.
    Cai XF; Lin S; Geng Z; Luo LL; Liu YJ; Zhang Z; Liu WY; Chen X; Li X; Yan J; Ye J
    Neurochem Res; 2020 May; 45(5):1072-1085. PubMed ID: 32052258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.