BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28089905)

  • 1. Nudix-type motif 2 contributes to cancer proliferation through the regulation of Rag GTPase-mediated mammalian target of rapamycin complex 1 localization.
    Kwon O; Kwak D; Ha SH; Jeon H; Park M; Chang Y; Suh PG; Ryu SH
    Cell Signal; 2017 Apr; 32():24-35. PubMed ID: 28089905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine and asparagine activate mTORC1 independently of Rag GTPases.
    Meng D; Yang Q; Wang H; Melick CH; Navlani R; Frank AR; Jewell JL
    J Biol Chem; 2020 Mar; 295(10):2890-2899. PubMed ID: 32019866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of mTORC1 by the Rag GTPases.
    Lama-Sherpa TD; Jeong MH; Jewell JL
    Biochem Soc Trans; 2023 Apr; 51(2):655-664. PubMed ID: 36929165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the assembly of the Ragulator-Rag GTPase complex.
    Yonehara R; Nada S; Nakai T; Nakai M; Kitamura A; Ogawa A; Nakatsumi H; Nakayama KI; Li S; Standley DM; Yamashita E; Nakagawa A; Okada M
    Nat Commun; 2017 Nov; 8(1):1625. PubMed ID: 29158492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.
    Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).
    Shibutani S; Okazaki H; Iwata H
    J Biol Chem; 2017 Nov; 292(44):18052-18061. PubMed ID: 28808055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C9orf72 associates with inactive Rag GTPases and regulates mTORC1-mediated autophagosomal and lysosomal biogenesis.
    Wang M; Wang H; Tao Z; Xia Q; Hao Z; Prehn JHM; Zhen X; Wang G; Ying Z
    Aging Cell; 2020 Apr; 19(4):e13126. PubMed ID: 32100453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes.
    Ögmundsdóttir MH; Heublein S; Kazi S; Reynolds B; Visvalingam SM; Shaw MK; Goberdhan DC
    PLoS One; 2012; 7(5):e36616. PubMed ID: 22574197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.
    Lawrence RE; Cho KF; Rappold R; Thrun A; Tofaute M; Kim DJ; Moldavski O; Hurley JH; Zoncu R
    Nat Cell Biol; 2018 Sep; 20(9):1052-1063. PubMed ID: 30061680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino Acid-Mediated Intracellular Ca
    Amemiya Y; Nakamura N; Ikeda N; Sugiyama R; Ishii C; Maki M; Shibata H; Takahara T
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34198993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1.
    Zhang T; Wang R; Wang Z; Wang X; Wang F; Ding J
    Nat Commun; 2017 Nov; 8(1):1394. PubMed ID: 29123114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex.
    Cui Z; Napolitano G; de Araujo MEG; Esposito A; Monfregola J; Huber LA; Ballabio A; Hurley JH
    Nature; 2023 Feb; 614(7948):572-579. PubMed ID: 36697823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and biochemical characterization of the Rag GTPase heterodimer.
    Doxsey DD; Shen K
    Methods Enzymol; 2022; 675():131-158. PubMed ID: 36220268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MORG1 limits mTORC1 signaling by inhibiting Rag GTPases.
    Abudu YP; Kournoutis A; Brenne HB; Lamark T; Johansen T
    Mol Cell; 2024 Feb; 84(3):552-569.e11. PubMed ID: 38103557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino Acids Enhance Polyubiquitination of Rheb and Its Binding to mTORC1 by Blocking Lysosomal ATXN3 Deubiquitinase Activity.
    Yao Y; Hong S; Ikeda T; Mori H; MacDougald OA; Nada S; Okada M; Inoki K
    Mol Cell; 2020 Nov; 80(3):437-451.e6. PubMed ID: 33157014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1.
    Nada S; Okada M
    J Biochem; 2020 Dec; 168(6):621-632. PubMed ID: 32653916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells.
    Doxsey DD; Tettoni SD; Egri SB; Shen K
    J Biol Chem; 2023 Jul; 299(7):104880. PubMed ID: 37269949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
    Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R
    Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.