These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Involvement of MicroRNAs in Diabetes and Its Complications. Wu B; Miller D Methods Mol Biol; 2017; 1617():225-239. PubMed ID: 28540689 [TBL] [Abstract][Full Text] [Related]
4. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Højlund K Dan Med J; 2014 Jul; 61(7):B4890. PubMed ID: 25123125 [TBL] [Abstract][Full Text] [Related]
5. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway. Wang M; Li S; Wang F; Zou J; Zhang Y Mol Med Rep; 2018 Jun; 17(6):8339-8348. PubMed ID: 29658605 [TBL] [Abstract][Full Text] [Related]
6. Autophagy in diabetes: β-cell dysfunction, insulin resistance, and complications. Barlow AD; Thomas DC DNA Cell Biol; 2015 Apr; 34(4):252-60. PubMed ID: 25665094 [TBL] [Abstract][Full Text] [Related]
7. Role of adenosine signalling and metabolism in β-cell regeneration. Andersson O Exp Cell Res; 2014 Feb; 321(1):3-10. PubMed ID: 24315942 [TBL] [Abstract][Full Text] [Related]
9. Insulin resistance: Review of the underlying molecular mechanisms. Yaribeygi H; Farrokhi FR; Butler AE; Sahebkar A J Cell Physiol; 2019 Jun; 234(6):8152-8161. PubMed ID: 30317615 [TBL] [Abstract][Full Text] [Related]
10. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility. Hinton PS Med Hypotheses; 2016 Aug; 93():81-6. PubMed ID: 27372862 [TBL] [Abstract][Full Text] [Related]
11. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype. Merighi S; Borea PA; Gessi S Pharmacol Res; 2015 Sep; 99():229-36. PubMed ID: 26142494 [TBL] [Abstract][Full Text] [Related]
12. Role of Caveolin-1 in Diabetes and Its Complications. Haddad D; Al Madhoun A; Nizam R; Al-Mulla F Oxid Med Cell Longev; 2020; 2020():9761539. PubMed ID: 32082483 [TBL] [Abstract][Full Text] [Related]
13. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. Hashimoto N; Tanaka T J Hum Genet; 2017 Feb; 62(2):141-150. PubMed ID: 27928162 [TBL] [Abstract][Full Text] [Related]
14. Autophagy and Mitochondria in Obesity and Type 2 Diabetes. Sarparanta J; García-Macia M; Singh R Curr Diabetes Rev; 2017; 13(4):352-369. PubMed ID: 26900135 [TBL] [Abstract][Full Text] [Related]
15. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Yaribeygi H; Sathyapalan T; Atkin SL; Sahebkar A Oxid Med Cell Longev; 2020; 2020():8609213. PubMed ID: 32215179 [TBL] [Abstract][Full Text] [Related]
16. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. Yang T; Gao X; Sandberg M; Zollbrecht C; Zhang XM; Hezel M; Liu M; Peleli M; Lai EY; Harris RA; Persson AE; Fredholm BB; Jansson L; Carlström M Diabetologia; 2015 Jul; 58(7):1610-20. PubMed ID: 25835725 [TBL] [Abstract][Full Text] [Related]
17. Modulation of β-cell function: a translational journey from the bench to the bedside. Goldfine AB; Kulkarni RN Diabetes Obes Metab; 2012 Oct; 14 Suppl 3():152-60. PubMed ID: 22928576 [TBL] [Abstract][Full Text] [Related]
19. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Portha B; Giroix MH; Tourrel-Cuzin C; Le-Stunff H; Movassat J Methods Mol Biol; 2012; 933():125-59. PubMed ID: 22893405 [TBL] [Abstract][Full Text] [Related]
20. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Henriksen EJ; Prasannarong M Mol Cell Endocrinol; 2013 Sep; 378(1-2):15-22. PubMed ID: 22564510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]