These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28090133)

  • 1. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.
    Shen R; Suuberg EM
    Build Environ; 2016 Feb; 96():178-187. PubMed ID: 28090133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contaminant sorption on soil and indoor materials and its possible impact on transients in vapor intrusion- An example based upon trichloroethylene (TCE).
    Xie S; Strom JGV; Suuberg EM
    J Hazard Mater; 2023 Mar; 446():. PubMed ID: 37138668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.
    Shirazi E; Pennell KG
    Environ Sci Process Impacts; 2017 Dec; 19(12):1594-1607. PubMed ID: 29210407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of vapor intrusion using controlled building pressure.
    McHugh TE; Beckley L; Bailey D; Gorder K; Dettenmaier E; Rivera-Duarte I; Brock S; MacGregor IC
    Environ Sci Technol; 2012 May; 46(9):4792-9. PubMed ID: 22486634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building science approaches for vapor intrusion studies.
    Shirazi E; Ojha S; Pennell KG
    Rev Environ Health; 2019 Sep; 34(3):245-250. PubMed ID: 31494643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.
    Pennell KG; Scammell MK; McClean MD; Ames J; Weldon B; Friguglietti L; Suuberg EM; Shen R; Indeglia PA; Heiger-Bernays WJ
    Ground Water Monit Remediat; 2013; 33(3):119-126. PubMed ID: 23950637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of vapor intrusion models.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Environ Sci Technol; 2013 Mar; 47(6):2457-70. PubMed ID: 23360069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.
    Batterman S; Su FC; Li S; Mukherjee B; Jia C;
    Res Rep Health Eff Inst; 2014 Jun; (181):3-63. PubMed ID: 25145040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the use of USEPA's Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM; Eklund B
    Ground Water Monit Remediat; 2018; 38(2):79-89. PubMed ID: 30524180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.
    Brenner D
    J Air Waste Manag Assoc; 2010 Jun; 60(6):747-58. PubMed ID: 20565001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone.
    Bekele DN; Naidu R; Chadalavada S
    Environ Geochem Health; 2018 Apr; 40(2):887-902. PubMed ID: 29022193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.
    Shen R; Pennell KG; Suuberg EM
    Chemosphere; 2014 Jan; 95():140-9. PubMed ID: 24034829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of indoor air measurements to evaluate intrusion of subsurface VOC vapors into buildings.
    Hers I; Zapf-Gilje R; Li L; Atwater J
    J Air Waste Manag Assoc; 2001 Sep; 51(9):1318-31. PubMed ID: 11575885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure assessment modeling for volatiles--towards an Australian indoor vapor intrusion model.
    Turczynowicz L; Robinson NI
    J Toxicol Environ Health A; 2007 Oct; 70(19):1619-34. PubMed ID: 17763080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency fluctuations of indoor pressure: A potential driving force for vapor intrusion in urban areas.
    Yao Y; Xiao Y; Luo J; Wang G; Ström J; Suuberg E
    Sci Total Environ; 2020 Mar; 710():136309. PubMed ID: 31926413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An examination of the building pressure cycling technique as a tool in vapor intrusion investigations with analytical simulations.
    Yao Y; Zuo J; Luo J; Chen Q; Ström J; Suuberg E
    J Hazard Mater; 2020 May; 389():121915. PubMed ID: 31882341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental assessments on schools located on or near former industrial facilities: Feedback on attenuation factors for the prediction of indoor air quality.
    Derycke V; Coftier A; Zornig C; Léprond H; Scamps M; Gilbert D
    Sci Total Environ; 2018 Jun; 626():754-761. PubMed ID: 29396339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2005 Jun; 39(12):4550-61. PubMed ID: 16047792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.
    Johnston JE; Gibson JM
    J Expo Sci Environ Epidemiol; 2014 Nov; 24(6):564-71. PubMed ID: 23549403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.