These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 28090245)

  • 1. Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins.
    Schröter J; Schiller J
    Oxid Med Cell Longev; 2016; 2016():8386362. PubMed ID: 28090245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids.
    Spickett CM; Jerlich A; Panasenko OM; Arnhold J; Pitt AR; Stelmaszyńska T; Schaur RJ
    Acta Biochim Pol; 2000; 47(4):889-99. PubMed ID: 11996112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorinated lipids and fatty acids: an emerging role in pathology.
    Spickett CM
    Pharmacol Ther; 2007 Sep; 115(3):400-9. PubMed ID: 17658610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid.
    Winterbourn CC; van den Berg JJ; Roitman E; Kuypers FA
    Arch Biochem Biophys; 1992 Aug; 296(2):547-55. PubMed ID: 1321589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes.
    Heinecke JW; Li W; Mueller DM; Bohrer A; Turk J
    Biochemistry; 1994 Aug; 33(33):10127-36. PubMed ID: 8060981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Oxidized Fatty Acids to Dimeric Species: In Vivo Relevance, Generation and Methods of Analysis.
    Leopold J; Prabutzki P; Engel KM; Schiller J
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatography-electrospray ionization mass spectrometry.
    Schröter J; Griesinger H; Reuÿ E; Schulz M; Riemer T; Süÿ R; Schiller J; Fuchs B
    J Chromatogr A; 2016 Mar; 1439():89-96. PubMed ID: 26700153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chlorinated lipidome originating from myeloperoxidase-derived HOCl targeting plasmalogens: Metabolism, clearance, and biological properties.
    Palladino END; Hartman CL; Albert CJ; Ford DA
    Arch Biochem Biophys; 2018 Mar; 641():31-38. PubMed ID: 29378164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion.
    Dever G; Wainwright CL; Kennedy S; Spickett CM
    Acta Biochim Pol; 2006; 53(4):761-8. PubMed ID: 17128291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS.
    Jerlich A; Pitt AR; Schaur RJ; Spickett CM
    Free Radic Biol Med; 2000 Mar; 28(5):673-82. PubMed ID: 10754262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study.
    Skaff O; Pattison DI; Davies MJ
    Biochemistry; 2008 Aug; 47(31):8237-45. PubMed ID: 18605737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypochlorous acid-derived modification of phospholipids: characterization of aminophospholipids as regulatory molecules for lipid peroxidation.
    Kawai Y; Kiyokawa H; Kimura Y; Kato Y; Tsuchiya K; Terao J
    Biochemistry; 2006 Nov; 45(47):14201-11. PubMed ID: 17115715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines.
    Panasenko OM; Spalteholz H; Schiller J; Arnhold J
    Free Radic Biol Med; 2003 Mar; 34(5):553-62. PubMed ID: 12614844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins.
    Carr AC; Vissers MC; Domigan NM; Winterbourn CC
    Redox Rep; 1997; 3(5-6):263-71. PubMed ID: 9754324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypochlorous acid-mediated modification of cholesterol and phospholipid: analysis of reaction products by gas chromatography-mass spectrometry.
    van den Berg JJ; Winterbourn CC; Kuypers FA
    J Lipid Res; 1993 Nov; 34(11):2005-12. PubMed ID: 8263423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects.
    Spickett CM; Dever G
    Biofactors; 2005; 24(1-4):17-31. PubMed ID: 16403960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: identification of 2-chlorohexadecanal.
    Albert CJ; Crowley JR; Hsu FF; Thukkani AK; Ford DA
    J Biol Chem; 2001 Jun; 276(26):23733-41. PubMed ID: 11301330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric analysis of HOCl- and free-radical-induced damage to lipids and proteins.
    Pitt AR; Spickett CM
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1077-82. PubMed ID: 18793192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective plasmenylcholine oxidation by hypochlorous acid: formation of lysophosphatidylcholine chlorohydrins.
    Messner MC; Albert CJ; Hsu FF; Ford DA
    Chem Phys Lipids; 2006 Oct; 144(1):34-44. PubMed ID: 16859663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins.
    Carr AC; van den Berg JJ; Winterbourn CC
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):254-64. PubMed ID: 9630661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.