BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28090380)

  • 1. Transposable elements and circular DNAs.
    Mourier T
    Mob Genet Elements; 2016; 6(6):e1240748. PubMed ID: 28090380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.
    Møller HD; Larsen CE; Parsons L; Hansen AJ; Regenberg B; Mourier T
    G3 (Bethesda); 2015 Dec; 6(2):453-62. PubMed ID: 26681518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential movement of transposable elements through DNA circularization.
    Mourier T
    Curr Genet; 2016 Nov; 62(4):697-700. PubMed ID: 26979517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrachromosomal circular DNA is common in yeast.
    Møller HD; Parsons L; Jørgensen TS; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3114-22. PubMed ID: 26038577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells.
    Gaubatz JW
    Mutat Res; 1990; 237(5-6):271-92. PubMed ID: 2079966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that a major class of mouse endogenous long terminal repeats (LTRs) resulted from recombination between exogenous retroviral LTRs and similar LTR-like elements (LTR-IS).
    Schmidt M; Glöggler K; Wirth T; Horak I
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6696-700. PubMed ID: 6093113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel class of interspersed LTR elements in primate genomes: structure, genomic distribution, and evolution.
    Liao D; Pavelitz T; Weiner AM
    J Mol Evol; 1998 Jun; 46(6):649-60. PubMed ID: 9608047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution.
    Babcock M; Pavlicek A; Spiteri E; Kashork CD; Ioshikhes I; Shaffer LG; Jurka J; Morrow BE
    Genome Res; 2003 Dec; 13(12):2519-32. PubMed ID: 14656960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile circular DNAs regulating memory and communication in CNS neurons.
    Smalheiser NR
    Front Mol Neurosci; 2023; 16():1304667. PubMed ID: 38125007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs.
    Gadgil RY; Rider SD; Shrestha R; Alhawach V; Hitch DC; Leffak M
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer.
    Wang M; Chen X; Yu F; Ding H; Zhang Y; Wang K
    Int J Biol Sci; 2021; 17(4):1010-1025. PubMed ID: 33867825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene amplifications and extrachromosomal circular DNAs: function and biogenesis.
    Yüksel A; Altungöz O
    Mol Biol Rep; 2023 Sep; 50(9):7693-7703. PubMed ID: 37433908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe.
    Bowen NJ; Jordan IK; Epstein JA; Wood V; Levin HL
    Genome Res; 2003 Sep; 13(9):1984-97. PubMed ID: 12952871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrachromosomal Circular DNA from TCGA Tumors Is Generated from Common Genomic Loci, Is Characterized by Self-Homology and DNA Motifs near Circle Breakpoints.
    Tatman PD; Black JC
    Cancers (Basel); 2022 May; 14(9):. PubMed ID: 35565439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs.
    Gadgil RY; Rider SD; Shrestha R; Alhawach V; Hitch DC; Leffak M
    NAR Cancer; 2024 Jun; 6(2):zcae027. PubMed ID: 38854437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective isolation of human DNAs from rodent-human hybrid cells as circular yeast artificial chromosomes by transformation-associated recombination cloning.
    Larionov V; Kouprina N; Graves J; Resnick MA
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13925-30. PubMed ID: 8943037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long terminal repeat of murine retroviral DNAs: sequence analysis, host-proviral junctions, and preintegration site.
    Van Beveren C; Rands E; Chattopadhyay SK; Lowy DR; Verma IM
    J Virol; 1982 Feb; 41(2):542-56. PubMed ID: 6281466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of circular copies of the 412 transposable element present in Drosophila melanogaster tissue culture cells, and isolation of a free 412 long terminal repeat.
    Shepherd BM; Finnegan DJ
    J Mol Biol; 1984 Nov; 180(1):21-40. PubMed ID: 6096559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersed repetitive sequences of the mouse genome are differentially represented in extrachromosomal circular DNAs in vivo.
    Flores SC; Moore TK; Gaubatz JW
    Plasmid; 1987 May; 17(3):257-60. PubMed ID: 2819911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.