BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 28090672)

  • 1. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A powerful method for combining P-values in genomic studies.
    Chen HS; Pfeiffer RM; Zhang S
    Genet Epidemiol; 2013 Dec; 37(8):814-9. PubMed ID: 23959976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-Analysis of Genome-Wide Association Studies with Correlated Individuals: Application to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
    Sofer T; Shaffer JR; Graff M; Qi Q; Stilp AM; Gogarten SM; North KE; Isasi CR; Laurie CC; Szpiro AA
    Genet Epidemiol; 2016 Sep; 40(6):492-501. PubMed ID: 27256683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation.
    Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P;
    BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the optimal scale for GWAS through hierarchical SNP aggregation.
    Guinot F; Szafranski M; Ambroise C; Samson F
    BMC Bioinformatics; 2018 Nov; 19(1):459. PubMed ID: 30497371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?
    Raffield LM; Louie T; Sofer T; Jain D; Ipp E; Taylor KD; Papanicolaou GJ; Avilés-Santa L; Lange LA; Laurie CC; Conomos MP; Thornton TA; Chen YI; Qi Q; Cotler S; Thyagarajan B; Schneiderman N; Rotter JI; Reiner AP; Lin HJ
    Hum Mol Genet; 2017 May; 26(10):1966-1978. PubMed ID: 28334935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies.
    Duggal P; Gillanders EM; Holmes TN; Bailey-Wilson JE
    BMC Genomics; 2008 Oct; 9():516. PubMed ID: 18976480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-assessment of multiple testing strategies for more efficient genome-wide association studies.
    Otani T; Noma H; Nishino J; Matsui S
    Eur J Hum Genet; 2018 Jul; 26(7):1038-1048. PubMed ID: 29523830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNP-based pathway enrichment analysis for genome-wide association studies.
    Weng L; Macciardi F; Subramanian A; Guffanti G; Potkin SG; Yu Z; Xie X
    BMC Bioinformatics; 2011 Apr; 12():99. PubMed ID: 21496265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing statistical significance in multivariable genome wide association analysis.
    Buzdugan L; Kalisch M; Navarro A; Schunk D; Fehr E; Bühlmann P
    Bioinformatics; 2016 Jul; 32(13):1990-2000. PubMed ID: 27153677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Rate of GWAS False Discoveries.
    Brzyski D; Peterson CB; Sobczyk P; Candès EJ; Bogdan M; Sabatti C
    Genetics; 2017 Jan; 205(1):61-75. PubMed ID: 27784720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hidden Markov random field model for genome-wide association studies.
    Li H; Wei Z; Maris J
    Biostatistics; 2010 Jan; 11(1):139-50. PubMed ID: 19822692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.
    Wang YT; Sung PY; Lin PL; Yu YW; Chung RH
    BMC Genomics; 2015 May; 16(1):381. PubMed ID: 25975968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering networks from genome-wide association studies via circular genomic permutation.
    Cabrera CP; Navarro P; Huffman JE; Wright AF; Hayward C; Campbell H; Wilson JF; Rudan I; Hastie ND; Vitart V; Haley CS
    G3 (Bethesda); 2012 Sep; 2(9):1067-75. PubMed ID: 22973544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.