These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28091571)

  • 1. Photoacoustic pump-probe tomography of fluorophores in vivo using interleaved image acquisition for motion suppression.
    Märk J; Wagener A; Zhang E; Laufer J
    Sci Rep; 2017 Jan; 7():40496. PubMed ID: 28091571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic imaging of fluorophores using pump-probe excitation.
    Märk J; Schmitt FJ; Theiss C; Dortay H; Friedrich T; Laufer J
    Biomed Opt Express; 2015 Jul; 6(7):2522-35. PubMed ID: 26203378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe).
    Demissie AA; VanderLaan D; Islam MS; Emelianov S; Dickson RM
    Photoacoustics; 2020 Dec; 20():100198. PubMed ID: 32685368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-wavelength excited photoacoustic-fluorescence microscopy for in vivo pH mapping.
    Yan B; Qin H; Huang C; Li C; Chen Q; Xing D
    Opt Lett; 2017 Apr; 42(7):1253-1256. PubMed ID: 28362742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-informed photoacoustic discrimination of multiple chromophores by lifetime mapping optically gated responses.
    Islam MS; VanderLaan D; Hickman J; Emelianov S; Dickson RM
    Photoacoustics; 2023 Aug; 32():100529. PubMed ID: 37645258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplified method for ultra high-resolution photoacoustic microscopy via transient absorption.
    Mattison SP; Applegate BE
    Opt Lett; 2014 Aug; 39(15):4474-7. PubMed ID: 25078206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J; Delpy D; Elwell C; Beard P
    Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI.
    Chowdhury ME; Mullinger KJ; Glover P; Bowtell R
    Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
    Lin KW; Hall TL; Xu Z; Cain CA
    Ultrasound Med Biol; 2015 Aug; 41(8):2148-60. PubMed ID: 25929995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach.
    Anas EMA; Zhang HK; Kang J; Boctor E
    Biomed Opt Express; 2018 Aug; 9(8):3852-3866. PubMed ID: 30338160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculations of nonlinear wave-packet interferometry signals in the pump-probe limit as tests for vibrational control over electronic excitation transfer.
    Biggs JD; Cina JA
    J Chem Phys; 2009 Dec; 131(22):224302. PubMed ID: 20001031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.
    Henning A; Fuchs A; Murdoch JB; Boesiger P
    NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-field 3D photoacoustic imaging based on plane transducer array and spatial phase-controlled algorithm.
    Zhou Q; Ji X; Xing D
    Med Phys; 2011 Mar; 38(3):1561-6. PubMed ID: 21520867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity.
    Lashkari B; Mandelis A
    Rev Sci Instrum; 2011 Sep; 82(9):094903. PubMed ID: 21974612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography.
    Applegate BE; Izatt JA
    Opt Express; 2006 Oct; 14(20):9142-55. PubMed ID: 19529295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.
    Qin H; Zhou T; Yang S; Xing D
    Small; 2015 Jun; 11(22):2675-86. PubMed ID: 25656695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleaved snapshot echo planar imaging of mouse brain at 7.0 T.
    Guilfoyle DN; Hrabe J
    NMR Biomed; 2006 Feb; 19(1):108-15. PubMed ID: 16411168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique.
    Tan Z; Liao Y; Wu Y; Tang Z; Wang RK
    Opt Express; 2012 Feb; 20(5):5802-8. PubMed ID: 22418386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging.
    Ephrat P; Albert GC; Roumeliotis MB; Belton M; Prato FS; Carson JJ
    Med Phys; 2010 Apr; 37(4):1619-28. PubMed ID: 20443483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.