These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28091610)
1. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610 [TBL] [Abstract][Full Text] [Related]
2. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001 [TBL] [Abstract][Full Text] [Related]
3. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Yang J; Gong W; Shi S; Du L; Sun J; Song S; Chen B; Zhang Z Sci Rep; 2016 Jun; 6():28787. PubMed ID: 27350029 [TBL] [Abstract][Full Text] [Related]
4. [Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus]. Li YD; Ye C; Cao ZS; Sun BF; Shu SF; Huang JB; Tian YC; He Y Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3040-3050. PubMed ID: 33345505 [TBL] [Abstract][Full Text] [Related]
5. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. Yang J; Du L; Gong W; Shi S; Sun J; Chen B PLoS One; 2018; 13(1):e0191068. PubMed ID: 29342190 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing. Tang YL; Huang JF; Cai SH; Wang RC Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505 [TBL] [Abstract][Full Text] [Related]
7. Development of an Apparatus for Crop-Growth Monitoring and Diagnosis. Ni J; Zhang J; Wu R; Pang F; Zhu Y Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30227614 [TBL] [Abstract][Full Text] [Related]
8. Estimation of leaf nitrogen content from spectral characteristics of rice canopy. Yang CM ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736 [TBL] [Abstract][Full Text] [Related]
9. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Yang J; Du L; Gong W; Shi S; Sun J; Chen B Opt Express; 2019 Feb; 27(4):3978-3990. PubMed ID: 30876021 [TBL] [Abstract][Full Text] [Related]
10. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice]. Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640 [TBL] [Abstract][Full Text] [Related]
11. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status]. Tan CW; Zhou QB; Qi L; Zhuang HY Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018 [TBL] [Abstract][Full Text] [Related]
12. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Zhou K; Cheng T; Zhu Y; Cao W; Ustin SL; Zheng H; Yao X; Tian Y Front Plant Sci; 2018; 9():964. PubMed ID: 30026750 [TBL] [Abstract][Full Text] [Related]
13. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214 [TBL] [Abstract][Full Text] [Related]
14. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters. Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447 [TBL] [Abstract][Full Text] [Related]
15. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification. Gong W; Sun J; Shi S; Yang J; Du L; Zhu B; Song S Sensors (Basel); 2015 Sep; 15(9):21989-2002. PubMed ID: 26340630 [TBL] [Abstract][Full Text] [Related]
16. [Model construction and application for nitrogen nutrition monitoring and diagnosis in double-cropping rice of Jiangxi Province, China]. Li YD; Cao ZS; Sun BF; Ye C; Shu SF; Huang JB; Wang KJ; Tian YC Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):433-440. PubMed ID: 32476335 [TBL] [Abstract][Full Text] [Related]
17. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693 [TBL] [Abstract][Full Text] [Related]
18. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Yang X; Huang J; Wu Y; Wang J; Wang P; Wang X; Huete AR Sci China Life Sci; 2011 Mar; 54(3):272-81. PubMed ID: 21416328 [TBL] [Abstract][Full Text] [Related]
19. Monitoring ratio of carbon to nitrogen (C/N) in wheat and barley leaves by using spectral slope features with branch-and-bound algorithm. Xu X; Yang G; Yang X; Li Z; Feng H; Xu B; Zhao X Sci Rep; 2018 Jul; 8(1):10034. PubMed ID: 29968798 [TBL] [Abstract][Full Text] [Related]
20. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field]. Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]