These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28091610)
21. [Estimating the severity of rice brown spot disease based on principal component analysis and radial basis function neural network]. Liu ZY; Huang JF; Tao RX; Zhang HZ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2156-60. PubMed ID: 19093583 [TBL] [Abstract][Full Text] [Related]
22. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Yang J; Sun J; Du L; Chen B; Zhang Z; Shi S; Gong W Opt Express; 2017 Feb; 25(4):3743-3755. PubMed ID: 28241586 [TBL] [Abstract][Full Text] [Related]
23. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat. Zhu H; Liu H; Xu Y; Guijun Y Appl Opt; 2018 Sep; 57(27):7722-7732. PubMed ID: 30462034 [TBL] [Abstract][Full Text] [Related]
24. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. Cao Y; Jiang K; Wu J; Yu F; Du W; Xu T PLoS One; 2020; 15(9):e0238530. PubMed ID: 32915830 [TBL] [Abstract][Full Text] [Related]
25. [Quantitative relationships between satellite channels-based spectral parameters and wheat canopy leaf nitrogen status]. Yao X; Liu XJ; Tian YC; Cao WX; Zhu Y; Zhang Y Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):431-7. PubMed ID: 23705388 [TBL] [Abstract][Full Text] [Related]
26. Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative. Yang J; Du L; Gong W; Shi S; Sun J R Soc Open Sci; 2020 Feb; 7(2):191941. PubMed ID: 32257346 [TBL] [Abstract][Full Text] [Related]
27. [The estimation model of rice leaf area index using hyperspectral data based on support vector machine]. Yang XH; Huang JF; Wang XZ; Wang FM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1837-41. PubMed ID: 18975815 [TBL] [Abstract][Full Text] [Related]
28. In situ hyperspectral data analysis for pigment content estimation of rice leaves. Cheng Q; Huang JF; Wang XZ; Wang RC J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990 [TBL] [Abstract][Full Text] [Related]
29. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie]. Liu ZY; Shi JJ; Wang DC; Huang JF Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693 [TBL] [Abstract][Full Text] [Related]
30. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Yang B; Ma J; Yao X; Cao W; Zhu Y Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477350 [TBL] [Abstract][Full Text] [Related]
31. Predicting leaf nitrogen content in wolfberry trees by hyperspectral transformation and machine learning for precision agriculture. Li Y; Wang H; Zhao H; Zhang L PLoS One; 2024; 19(9):e0306851. PubMed ID: 39325703 [TBL] [Abstract][Full Text] [Related]
32. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [TBL] [Abstract][Full Text] [Related]
33. Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. Wang FM; Huang JF; Wang XZ J Integr Plant Biol; 2008 Mar; 50(3):291-9. PubMed ID: 18713361 [TBL] [Abstract][Full Text] [Related]
34. Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum. Yang J; Du L; Cheng Y; Shi S; Xiang C; Sun J; Chen B Opt Express; 2020 Jun; 28(13):18728-18741. PubMed ID: 32672167 [TBL] [Abstract][Full Text] [Related]
35. Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics. Wang YJ; Li TH; Jin G; Wei YM; Li LQ; Kalkhajeh YK; Ning JM; Zhang ZZ J Sci Food Agric; 2020 Jan; 100(1):161-167. PubMed ID: 31471904 [TBL] [Abstract][Full Text] [Related]
36. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents. Li W; Niu Z; Sun G; Gao S; Wu M Opt Express; 2016 Mar; 24(5):4771-4785. PubMed ID: 29092306 [TBL] [Abstract][Full Text] [Related]
37. Estimating the rice nitrogen nutrition index based on hyperspectral transform technology. Yu F; Bai J; Jin Z; Zhang H; Yang J; Xu T Front Plant Sci; 2023; 14():1118098. PubMed ID: 37035061 [TBL] [Abstract][Full Text] [Related]
38. Hyperspectral characteristic analysis for leaf nitrogen content in different growth stages of winter wheat. Haiying L; Hongchun Z Appl Opt; 2016 Dec; 55(34):D151-D161. PubMed ID: 27958448 [TBL] [Abstract][Full Text] [Related]
39. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter. Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354 [TBL] [Abstract][Full Text] [Related]
40. Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. Wang L; Chang Q; Yang J; Zhang X; Li F PLoS One; 2018; 13(12):e0207624. PubMed ID: 30517144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]