These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28091668)

  • 1. Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms.
    Eveleens CA; Page AJ
    Nanoscale; 2017 Jan; 9(4):1727-1737. PubMed ID: 28091668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.
    Page AJ; Saha S; Li HB; Irle S; Morokuma K
    J Am Chem Soc; 2015 Jul; 137(29):9281-8. PubMed ID: 26148208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron Nitride Nanotube Nucleation via Network Fusion during Catalytic Chemical Vapor Deposition.
    McLean B; Webber GB; Page AJ
    J Am Chem Soc; 2019 Aug; 141(34):13385-13393. PubMed ID: 31387350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    J Am Chem Soc; 2011 Jan; 133(3):621-8. PubMed ID: 21142071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.
    Yang F; Wang X; Li M; Liu X; Zhao X; Zhang D; Zhang Y; Yang J; Li Y
    Acc Chem Res; 2016 Apr; 49(4):606-15. PubMed ID: 26999451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface.
    Zhao Q; Xu Z; Hu Y; Ding F; Zhang J
    Sci Adv; 2016 May; 2(5):e1501729. PubMed ID: 27386532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of catalyst structures on carbon nanotubes growth via methane-CVD.
    Wang H; Sun L; Wang S; Xiao Z
    J Nanosci Nanotechnol; 2009 Feb; 9(2):848-52. PubMed ID: 19441406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts.
    Yang F; Wang X; Zhang D; Yang J; Luo D; Xu Z; Wei J; Wang JQ; Xu Z; Peng F; Li X; Li R; Li Y; Li M; Bai X; Ding F; Li Y
    Nature; 2014 Jun; 510(7506):522-4. PubMed ID: 24965654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality control for predominant metallic or semiconducting single-walled carbon nanotubes prepared using a mild etchant.
    Moon SY; Kim WS
    Chem Commun (Camb); 2019 Nov; 55(92):13888-13891. PubMed ID: 31675018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts.
    Yamada T; Namai T; Hata K; Futaba DN; Mizuno K; Fan J; Yudasaka M; Yumura M; Iijima S
    Nat Nanotechnol; 2006 Nov; 1(2):131-6. PubMed ID: 18654165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition.
    Garg RK; Kim SS; Hash DB; Gore JP; Fisher TS
    J Nanosci Nanotechnol; 2008 Jun; 8(6):3068-76. PubMed ID: 18681048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays.
    Geohegan DB; Puretzky AA; Jackson JJ; Rouleau CM; Eres G; More KL
    ACS Nano; 2011 Oct; 5(10):8311-21. PubMed ID: 21916517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.
    Verissimo C; Aguiar MR; Moshkalev SA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4459-66. PubMed ID: 19916474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes.
    Xiang R; Maruyama S
    R Soc Open Sci; 2018 Aug; 5(8):180345. PubMed ID: 30225021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale plasma chemistry enables fast, size-selective nanotube nucleation.
    Ostrikov KK; Mehdipour H
    J Am Chem Soc; 2012 Mar; 134(9):4303-12. PubMed ID: 22299631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n,m) distribution.
    Zhu Z; Jiang H; Susi T; Nasibulin AG; Kauppinen EI
    J Am Chem Soc; 2011 Feb; 133(5):1224-7. PubMed ID: 21192679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ammonia on carbon nanotube growth using simple thermal chemical vapour deposition.
    Teh AA; Ahmad R; Kara M; Rusop M; Awang Z
    J Nanosci Nanotechnol; 2012 Oct; 12(10):8201-4. PubMed ID: 23421197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity.
    Brown DP; Nasibulin AG; Kauppinen EI
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3803-19. PubMed ID: 19049135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.