These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28091811)

  • 1. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses.
    Li P; Jackson GP
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1271-1281. PubMed ID: 28091811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism.
    Li P; Kreft I; Jackson GP
    J Am Soc Mass Spectrom; 2018 Feb; 29(2):284-296. PubMed ID: 28786096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations.
    Hoffmann WD; Jackson GP
    J Am Soc Mass Spectrom; 2014 Nov; 25(11):1939-43. PubMed ID: 25231159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge transfer dissociation of phosphocholines: gas-phase ion/ion reactions between helium cations and phospholipid cations.
    Li P; Jackson GP
    J Mass Spectrom; 2017 May; 52(5):271-282. PubMed ID: 28258643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentation of singly, doubly, and triply charged hydrogen deficient peptide radical cations in infrared multiphoton dissociation and electron induced dissociation.
    Kalli A; Hess S
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):244-63. PubMed ID: 22101468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Assessment of Six Different Reagent Gases for Charge Transfer Dissociation (CTD) of Biological Ions.
    Sasiene ZJ; Mendis PM; Jackson GP
    Int J Mass Spectrom; 2021 Apr; 462():. PubMed ID: 33679212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides.
    Liu J; McLuckey SA
    Int J Mass Spectrom; 2012 Dec; 330-332():174-181. PubMed ID: 23264749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues.
    Cook SL; Collin OL; Jackson GP
    J Mass Spectrom; 2009 Aug; 44(8):1211-23. PubMed ID: 19466707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion trap collisional activation of c and z* ions formed via gas-phase ion/ion electron-transfer dissociation.
    Han H; Xia Y; McLuckey SA
    J Proteome Res; 2007 Aug; 6(8):3062-9. PubMed ID: 17608403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages.
    Peng Z; Bu J; McLuckey SA
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1765-1774. PubMed ID: 28497355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.
    Xia Y; Liang X; McLuckey SA
    Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer dissociation (ETD) of peptides containing intrachain disulfide bonds.
    Cole SR; Ma X; Zhang X; Xia Y
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):310-20. PubMed ID: 22161508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-remote fragmentation of odd-electron peptide ions.
    Laskin J; Yang Z; Lam C; Chu IK
    Anal Chem; 2007 Sep; 79(17):6607-14. PubMed ID: 17676923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer dissociation of a branched glycan with alkali and alkaline earth metal adducts.
    Sasiene ZJ; Ropartz D; Rogniaux H; Jackson GP
    J Mass Spectrom; 2021 Jul; 56(7):e4774. PubMed ID: 34180110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.
    Chingin K; Makarov A; Denisov E; Rebrov O; Zubarev RA
    Anal Chem; 2014 Jan; 86(1):372-9. PubMed ID: 24236851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain.
    Catalina MI; Koeleman CA; Deelder AM; Wuhrer M
    Rapid Commun Mass Spectrom; 2007; 21(6):1053-61. PubMed ID: 17311219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced dissociation of singly protonated peptides at 193 and 266 nm within a hybrid linear ion trap mass spectrometer.
    Lai CK; Ng DC; Pang HF; Le Blanc JC; Hager JW; Fang DC; Cheung AS; Chu IK
    Rapid Commun Mass Spectrom; 2013 May; 27(10):1119-27. PubMed ID: 23592116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical-driven peptide backbone dissociation tandem mass spectrometry.
    Oh HB; Moon B
    Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation of alpha-radical cations of arginine-containing peptides.
    Laskin J; Yang Z; Ng CM; Chu IK
    J Am Soc Mass Spectrom; 2010 Apr; 21(4):511-21. PubMed ID: 20138543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge State Dependent Fragmentation of Gaseous α-Synuclein Cations via Ion Trap and Beam-Type Collisional Activation.
    Chanthamontri C; Liu J; McLuckey SA
    Int J Mass Spectrom; 2009 Jun; 283(1-3):9-16. PubMed ID: 20160958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.