These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28091935)

  • 1. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria.
    Bozhüyük KAJ; Zhou Q; Engel Y; Heinrich A; Pérez A; Bode HB
    Curr Top Microbiol Immunol; 2017; 402():55-79. PubMed ID: 28091935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus.
    Fuchs SW; Sachs CC; Kegler C; Nollmann FI; Karas M; Bode HB
    Anal Chem; 2012 Aug; 84(16):6948-55. PubMed ID: 22873683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling.
    Rill A; Zhao L; Bode HB
    Microb Cell Fact; 2024 Apr; 23(1):98. PubMed ID: 38561780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Xenorhabdus and Photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR).
    San-Blas E; Cubillán N; Guerra M; Portillo E; Esteves I
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():58-62. PubMed ID: 22465768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus.
    Tobias NJ; Wolff H; Djahanschiri B; Grundmann F; Kronenwerth M; Shi YM; Simonyi S; Grün P; Shapiro-Ilan D; Pidot SJ; Stinear TP; Ebersberger I; Bode HB
    Nat Microbiol; 2017 Dec; 2(12):1676-1685. PubMed ID: 28993611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining the Natural Product Repertoire in Entomopathogenic Bacteria.
    Tobias NJ; Shi YM; Bode HB
    Trends Microbiol; 2018 Oct; 26(10):833-840. PubMed ID: 29801772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design.
    Cai X; Nowak S; Wesche F; Bischoff I; Kaiser M; Fürst R; Bode HB
    Nat Chem; 2017 Apr; 9(4):379-386. PubMed ID: 28338679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in
    Heinrich AK; Hirschmann M; Neubacher N; Bode HB
    PeerJ; 2017; 5():e3471. PubMed ID: 28663937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagellar Regulation and Virulence in the Entomopathogenic Bacteria-Xenorhabdus nematophila and Photorhabdus luminescens.
    Givaudan A; Lanois A
    Curr Top Microbiol Immunol; 2017; 402():39-51. PubMed ID: 28091933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclo(tetrahydroxybutyrate) production is sufficient to distinguish between Xenorhabdus and Photorhabdus isolates in Thailand.
    Tobias NJ; Parra-Rojas C; Shi YN; Shi YM; Simonyi S; Thanwisai A; Vitta A; Chantratita N; Hernandez-Vargas EA; Bode HB
    Environ Microbiol; 2019 Aug; 21(8):2921-2932. PubMed ID: 31102315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin.
    Godjo A; Afouda L; Baimey H; Decraemer W; Willems A
    Arch Microbiol; 2018 May; 200(4):589-601. PubMed ID: 29270664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect-specific production of new GameXPeptides in photorhabdus luminescens TTO1, widespread natural products in entomopathogenic bacteria.
    Nollmann FI; Dauth C; Mulley G; Kegler C; Kaiser M; Waterfield NR; Bode HB
    Chembiochem; 2015 Jan; 16(2):205-8. PubMed ID: 25425189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence.
    Liu J; Berry RE; Blouin MS
    J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-Phase Enrichment and Analysis of Azide-Labeled Natural Products: Fishing Downstream of Biochemical Pathways.
    Pérez AJ; Wesche F; Adihou H; Bode HB
    Chemistry; 2016 Jan; 22(2):639-45. PubMed ID: 26626278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. easyPACId, a Simple Method for Induced Production, Isolation, Identification, and Testing of Natural Products from Proteobacteria.
    Bode E; Assmann D; Happel P; Meyer E; Münch K; Rössel N; Bode HB
    Bio Protoc; 2023 Jul; 13(13):e4709. PubMed ID: 37449040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Product Diversification Mediated by Alternative Transcriptional Starting.
    Tobias NJ; Linck A; Bode HB
    Angew Chem Int Ed Engl; 2018 May; 57(20):5699-5702. PubMed ID: 29508935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoter Activation in Δhfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing.
    Bode E; Heinrich AK; Hirschmann M; Abebew D; Shi YN; Vo TD; Wesche F; Shi YM; Grün P; Simonyi S; Keller N; Engel Y; Wenski S; Bennet R; Beyer S; Bischoff I; Buaya A; Brandt S; Cakmak I; Çimen H; Eckstein S; Frank D; Fürst R; Gand M; Geisslinger G; Hazir S; Henke M; Heermann R; Lecaudey V; Schäfer W; Schiffmann S; Schüffler A; Schwenk R; Skaljac M; Thines E; Thines M; Ulshöfer T; Vilcinskas A; Wichelhaus TA; Bode HB
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18957-18963. PubMed ID: 31693786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entomopathogenic bacteria as a source of secondary metabolites.
    Bode HB
    Curr Opin Chem Biol; 2009 Apr; 13(2):224-30. PubMed ID: 19345136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.