These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28091989)
1. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina). Marinho CH; Giarratano E; Esteves JL; Narvarte MA; Gil MN Environ Sci Pollut Res Int; 2017 Mar; 24(7):6724-6735. PubMed ID: 28091989 [TBL] [Abstract][Full Text] [Related]
2. Metal biomonitoring in a Patagonian salt marsh. Marinho CH; Giarratano E; Gil MN Environ Monit Assess; 2018 Sep; 190(10):598. PubMed ID: 30238277 [TBL] [Abstract][Full Text] [Related]
3. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh. Idaszkin YL; Lancelotti JL; Bouza PJ; Marcovecchio JE Mar Pollut Bull; 2015 Dec; 101(1):457-465. PubMed ID: 26481413 [TBL] [Abstract][Full Text] [Related]
4. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. El Azhari A; Rhoujjati A; El Hachimi ML; Ambrosi JP Ecotoxicol Environ Saf; 2017 Oct; 144():464-474. PubMed ID: 28667858 [TBL] [Abstract][Full Text] [Related]
5. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Idaszkin YL; Bouza PJ; Marinho CH; Gil MN Mar Pollut Bull; 2014 Dec; 89(1-2):444-450. PubMed ID: 25457812 [TBL] [Abstract][Full Text] [Related]
6. Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils. Idaszkin YL; Lancelotti JL; Pollicelli MP; Marcovecchio JE; Bouza PJ Mar Pollut Bull; 2017 May; 118(1-2):297-306. PubMed ID: 28291544 [TBL] [Abstract][Full Text] [Related]
7. Potential mobility assessment of metals in salt marsh sediments from San Antonio Bay. Marinho CH; Giarratano E; Domini CE; Garrido M; Gil MN Environ Monit Assess; 2019 Nov; 191(12):723. PubMed ID: 31696305 [TBL] [Abstract][Full Text] [Related]
8. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Lei M; Zhang Y; Khan S; Qin PF; Liao BH Environ Monit Assess; 2010 Sep; 168(1-4):215-22. PubMed ID: 19669583 [TBL] [Abstract][Full Text] [Related]
9. Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Sun Y; Xie Z; Li J; Xu J; Chen Z; Naidu R Environ Geochem Health; 2006; 28(1-2):73-8. PubMed ID: 16528591 [TBL] [Abstract][Full Text] [Related]
10. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
11. Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Garrido AE; Strosnider WHJ; Wilson RT; Condori J; Nairn RW Environ Geochem Health; 2017 Jun; 39(3):681-700. PubMed ID: 28337621 [TBL] [Abstract][Full Text] [Related]
12. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland]. Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663 [TBL] [Abstract][Full Text] [Related]
13. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
14. Uptake and accumulation of metals in Spartina alterniflora salt marshes from a South American estuary. Negrin VL; Botté SE; La Colla NS; Marcovecchio JE Sci Total Environ; 2019 Feb; 649():808-820. PubMed ID: 30176491 [TBL] [Abstract][Full Text] [Related]
15. Geochemical processes controlling the distribution and concentration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining residues. Idaszkin YL; Alvarez MDP; Carol E Sci Total Environ; 2017 Oct; 596-597():230-235. PubMed ID: 28433765 [TBL] [Abstract][Full Text] [Related]
16. Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine, Central Tunisia. Elmayel I; Esbrí JM; García-Ordiales E; Elouaer Z; Garcia-Noguero EM; Bouzid J; Campos JA; Higueras PL Environ Geochem Health; 2020 Nov; 42(11):3529-3542. PubMed ID: 32399635 [TBL] [Abstract][Full Text] [Related]
17. Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Wang Y; Zhou L; Zheng X; Qian P; Wu Y Environ Sci Pollut Res Int; 2013 Mar; 20(3):1675-85. PubMed ID: 22821343 [TBL] [Abstract][Full Text] [Related]
18. Stock and losses of trace metals from salt marsh plants. Caçador I; Caetano M; Duarte B; Vale C Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308 [TBL] [Abstract][Full Text] [Related]
19. Metal accumulation in wild plants surrounding mining wastes. González RC; González-Chávez MC Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286 [TBL] [Abstract][Full Text] [Related]
20. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]