These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28092358)

  • 1. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors.
    Porter EB; Polaski JT; Morck MM; Batey RT
    Nat Chem Biol; 2017 Mar; 13(3):295-301. PubMed ID: 28092358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes.
    Micura R; Höbartner C
    Chem Soc Rev; 2020 Oct; 49(20):7331-7353. PubMed ID: 32944725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial ribozyme switches containing natural riboswitch aptamer domains.
    Wieland M; Benz A; Klauser B; Hartig JS
    Angew Chem Int Ed Engl; 2009; 48(15):2715-8. PubMed ID: 19156802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Genetic Switches Based on the Twister Ribozyme Motif.
    Felletti M; Klauser B; Hartig JS
    Methods Mol Biol; 2016; 1380():225-39. PubMed ID: 26552830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selecting allosteric ribozymes.
    Piganeau N
    Methods Mol Biol; 2012; 848():317-28. PubMed ID: 22315077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices.
    Weigand JE; Wittmann A; Suess B
    Methods Mol Biol; 2012; 813():157-68. PubMed ID: 22083741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'-monophosphate.
    Gu H; Furukawa K; Breaker RR
    Anal Chem; 2012 Jun; 84(11):4935-41. PubMed ID: 22519888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and utilization of non-coding RNA-small molecule interactions.
    Georgianna WE; Young DD
    Org Biomol Chem; 2011 Dec; 9(23):7969-78. PubMed ID: 21993406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.
    Martini L; Meyer AJ; Ellefson JW; Milligan JN; Forlin M; Ellington AD; Mansy SS
    ACS Synth Biol; 2015 Oct; 4(10):1144-50. PubMed ID: 25978303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP.
    Furukawa K; Gu H; Breaker RR
    Methods Mol Biol; 2014; 1111():209-20. PubMed ID: 24549622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch.
    Boussebayle A; Torka D; Ollivaud S; Braun J; Bofill-Bosch C; Dombrowski M; Groher F; Hamacher K; Suess B
    Nucleic Acids Res; 2019 May; 47(9):4883-4895. PubMed ID: 30957848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A light-responsive RNA aptamer for an azobenzene derivative.
    Lotz TS; Halbritter T; Kaiser C; Rudolph MM; Kraus L; Groher F; Steinwand S; Wachtveitl J; Heckel A; Suess B
    Nucleic Acids Res; 2019 Feb; 47(4):2029-2040. PubMed ID: 30517682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The case of the missing allosteric ribozymes.
    Panchapakesan SSS; Breaker RR
    Nat Chem Biol; 2021 Apr; 17(4):375-382. PubMed ID: 33495645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Manna S; Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2021; 2323():121-140. PubMed ID: 34086278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboswitches: still a lot of undiscovered country.
    Batey RT
    RNA; 2015 Apr; 21(4):560-3. PubMed ID: 25780138
    [No Abstract]   [Full Text] [Related]  

  • 18. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.
    Lipi F; Chen S; Chakravarthy M; Rakesh S; Veedu RN
    RNA Biol; 2016 Dec; 13(12):1232-1245. PubMed ID: 27715478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of tautomerism in RNA biochemistry.
    Singh V; Fedeles BI; Essigmann JM
    RNA; 2015 Jan; 21(1):1-13. PubMed ID: 25516996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.