BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28092388)

  • 1. Exploration and analysis of drug modes of action through feature integration.
    Xin M; Fan J; Liu M; Jiang Z
    Mol Biosyst; 2017 Jan; 13(2):425-431. PubMed ID: 28092388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space.
    Cheng F; Li W; Wu Z; Wang X; Zhang C; Li J; Liu G; Tang Y
    J Chem Inf Model; 2013 Apr; 53(4):753-62. PubMed ID: 23527559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.
    Carriger JF; Martin TM; Barron MG
    Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding.
    Chen H; Cheng F; Li J
    PLoS Comput Biol; 2020 Jul; 16(7):e1008040. PubMed ID: 32667925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DrugNet: network-based drug-disease prioritization by integrating heterogeneous data.
    Martínez V; Navarro C; Cano C; Fajardo W; Blanco A
    Artif Intell Med; 2015 Jan; 63(1):41-9. PubMed ID: 25704113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adverse drug events: database construction and in silico prediction.
    Cheng F; Li W; Wang X; Zhou Y; Wu Z; Shen J; Tang Y
    J Chem Inf Model; 2013 Apr; 53(4):744-52. PubMed ID: 23521697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions.
    Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH
    J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation.
    Oliver A; Canals V; Rosselló JL
    Sci Rep; 2017 Mar; 7():43738. PubMed ID: 28263323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of chemical mechanism of action via an improved network-based inference method.
    Wu Z; Lu W; Wu D; Luo A; Bian H; Li J; Li W; Liu G; Huang J; Cheng F; Tang Y
    Br J Pharmacol; 2016 Dec; 173(23):3372-3385. PubMed ID: 27646592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties.
    Cheng F; Zhao Z
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e278-86. PubMed ID: 24644270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational drug repositioning with attention walking.
    Park JH; Cho YR
    Sci Rep; 2024 May; 14(1):10072. PubMed ID: 38698208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug target prediction and repositioning using an integrated network-based approach.
    Emig D; Ivliev A; Pustovalova O; Lancashire L; Bureeva S; Nikolsky Y; Bessarabova M
    PLoS One; 2013; 8(4):e60618. PubMed ID: 23593264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico drug repositioning: from large-scale transcriptome data to therapeutics.
    Kwon OS; Kim W; Cha HJ; Lee H
    Arch Pharm Res; 2019 Oct; 42(10):879-889. PubMed ID: 31482491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of chemical-protein interactions network with weighted network-based inference method.
    Cheng F; Zhou Y; Li W; Liu G; Tang Y
    PLoS One; 2012; 7(7):e41064. PubMed ID: 22815915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.
    Cichonska A; Ravikumar B; Parri E; Timonen S; Pahikkala T; Airola A; Wennerberg K; Rousu J; Aittokallio T
    PLoS Comput Biol; 2017 Aug; 13(8):e1005678. PubMed ID: 28787438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.
    Sawada R; Iwata H; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Dec; 55(12):2717-30. PubMed ID: 26580494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug repositioning for enzyme modulator based on human metabolite-likeness.
    Lee YH; Choi H; Park S; Lee B; Yi GS
    BMC Bioinformatics; 2017 May; 18(Suppl 7):226. PubMed ID: 28617219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.