These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28092566)

  • 1. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy.
    Lerner ZF; Gasparri GM; Bair MO; Lawson JL; Luque J; Harvey TA; Lerner AT
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1985-1993. PubMed ID: 30235140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.
    Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and control of the MINDWALKER exoskeleton.
    Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and immediate effects of Hybrid Assistive Limb in children with cerebral palsy: A pilot study.
    Nakagawa S; Mutsuzaki H; Mataki Y; Endo Y; Matsuda M; Yoshikawa K; Kamada H; Iwasaki N; Yamazaki M
    Brain Dev; 2020 Feb; 42(2):140-147. PubMed ID: 31704189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedded Control System for Smart Walking Assistance Device.
    Bosnak M; Skrjanc I
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):205-214. PubMed ID: 27093701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Robotic Exoskeleton-Aided Gait Training in the Strength, Body Balance, and Walking Speed in Individuals With Multiple Sclerosis: A Single-Group Preliminary Study.
    Drużbicki M; Guzik A; Przysada G; Phd LP; Brzozowska-Magoń A; Cygoń K; Boczula G; Bartosik-Psujek H
    Arch Phys Med Rehabil; 2021 Feb; 102(2):175-184. PubMed ID: 33181115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.