These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28092626)

  • 1. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures.
    Panter JR; Kusumaatmaja H
    J Phys Condens Matter; 2017 Mar; 29(8):084001. PubMed ID: 28092626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning traditionally nonwetting surfaces wetting for even ultra-high surface energy liquids.
    Wilke KL; Lu Z; Song Y; Wang EN
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces.
    Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH
    Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical consideration of wetting on a cylindrical pillar defect: pinning energy and penetrating phenomena.
    Mayama H; Nonomura Y
    Langmuir; 2011 Apr; 27(7):3550-60. PubMed ID: 21341783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting state transitions of individual condensed droplets on pillared textured surfaces.
    Chu C; Zhao Y; Hao P; Lv C
    Soft Matter; 2023 Jan; 19(4):670-678. PubMed ID: 36597934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry.
    Savoy ES; Escobedo FA
    Langmuir; 2012 Nov; 28(46):16080-90. PubMed ID: 23095106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hydrophobicity of rough polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Phys Chem B; 2007 Apr; 111(13):3336-41. PubMed ID: 17388480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact line pinning on microstructured surfaces for liquids in the Wenzel state.
    Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J
    Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.
    Zhang Y; Ren W
    J Chem Phys; 2014 Dec; 141(24):244705. PubMed ID: 25554173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
    Iliev S; Pesheva N
    Phys Rev E; 2016 Jun; 93(6):062801. PubMed ID: 27415335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.