BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28092637)

  • 1. Non-invasive classification of breast microcalcifications using x-ray coherent scatter computed tomography.
    Ghammraoui B; Popescu LM
    Phys Med Biol; 2017 Feb; 62(3):1192-1207. PubMed ID: 28092637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast.
    Ghammraoui B; Badal A; Popescu LM
    Phys Med Biol; 2016 Apr; 61(8):3164-79. PubMed ID: 27025665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach.
    Ghammraoui B; Bader S; Thuering T; Glick SJ
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36716475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of novel breast imaging modalities based on coherent x-ray scattering.
    Ghammraoui B; Badal A
    Phys Med Biol; 2014 Jul; 59(13):3501-16. PubMed ID: 24898114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT energy weighting in the presence of scatter and limited energy resolution.
    Schmidt TG
    Med Phys; 2010 Mar; 37(3):1056-67. PubMed ID: 20384241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection.
    van Stevendaal U; Schlomka JP; Harding A; Grass M
    Med Phys; 2003 Sep; 30(9):2465-74. PubMed ID: 14528968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material-specific analysis using coherent-scatter imaging.
    Batchelar DL; Cunningham IA
    Med Phys; 2002 Aug; 29(8):1651-60. PubMed ID: 12201410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TU-E-217BCD-02: An X-Ray Scatter Correction Method for Dedicated Breast Computed Tomography.
    Sechopoulos I
    Med Phys; 2012 Jun; 39(6Part24):3914. PubMed ID: 28518676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.
    Van Uytven E; Pistorius S; Gordon R
    Med Phys; 2007 Jan; 34(1):256-65. PubMed ID: 17278511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems.
    Ghammraoui B; Zidan A; Alayoubi A; Zidan A; Glick SJ
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34375962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray scatter correction for dedicated cone beam breast CT using a forward-projection model.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2017 Jun; 44(6):2312-2320. PubMed ID: 28295375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of X-ray scattering for various phantoms and clinical breast geometries using breast CT on a dedicated hybrid system.
    Shah JP; Mann SD; Tornai MP
    J Xray Sci Technol; 2017; 25(3):373-389. PubMed ID: 28157120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed tomography with energy-resolved detection: a feasibility study.
    Shikhaliev PM
    Phys Med Biol; 2008 Mar; 53(5):1475-95. PubMed ID: 18296774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory coherent-scatter analysis of intact urinary stones with crystalline composition: a tomographic approach.
    Davidson MT; Batchelar DL; Velupillai S; Denstedt JD; Cunningham IA
    Phys Med Biol; 2005 Aug; 50(16):3907-25. PubMed ID: 16077235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy assessment and characterization of x-ray coded aperture coherent scatter spectral imaging for breast cancer classification.
    Lakshmanan MN; Greenberg JA; Samei E; Kapadia AJ
    J Med Imaging (Bellingham); 2017 Jan; 4(1):013505. PubMed ID: 28331884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-angle scatter tomography with a photon-counting detector array.
    Pang S; Zhu Z; Wang G; Cong W
    Phys Med Biol; 2016 May; 61(10):3734-48. PubMed ID: 27082147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-composition imaging using coherent-scatter computed tomography: assessing bone health beyond bone mineral density.
    Batchelar DL; Davidson MT; Dabrowski W; Cunningham IA
    Med Phys; 2006 Apr; 33(4):904-15. PubMed ID: 16696465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.