BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28092954)

  • 1. Modeling and simulation for toxicity assessment.
    Anton C; Deng J; Wong YS; Zhang Y; Zhang W; Gabos S; Huang DY; Jin C
    Math Biosci Eng; 2017 Jun; 14(3):581-606. PubMed ID: 28092954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity assessment based on the AUC50 using multi-concentration time-dependent cellular response curves.
    Pan T; Huang B; Zhang W; Gabos S; Huang DY; Devendran V
    Anal Chim Acta; 2013 Feb; 764():44-52. PubMed ID: 23374213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliably estimating the effect of toxicants on fertilization success in marine broadcast spawners.
    Marshall DJ
    Mar Pollut Bull; 2006 Jul; 52(7):734-8. PubMed ID: 16797034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into in vitro biokinetics using Virtual Cell Based Assay simulations.
    Proença S; Paini A; Joossens E; Sala Benito JV; Berggren E; Worth A; Whelan M; Prieto P
    ALTEX; 2019; 36(3):447-461. PubMed ID: 30924507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) modeling: The case of kidney toxicity induced by aristolochic acid I.
    Abdullah R; Alhusainy W; Woutersen J; Rietjens IM; Punt A
    Food Chem Toxicol; 2016 Jun; 92():104-16. PubMed ID: 27016491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. True prediction of lowest observed adverse effect levels.
    García-Domenech R; de Julián-Ortiz JV; Besalú E
    Mol Divers; 2006 May; 10(2):159-68. PubMed ID: 16721628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals.
    Gülden M; Seibert H
    Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.
    Kim MT; Huang R; Sedykh A; Wang W; Xia M; Zhu H
    Environ Health Perspect; 2016 May; 124(5):634-41. PubMed ID: 26383846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening.
    O'Brien PJ; Irwin W; Diaz D; Howard-Cofield E; Krejsa CM; Slaughter MR; Gao B; Kaludercic N; Angeline A; Bernardi P; Brain P; Hougham C
    Arch Toxicol; 2006 Sep; 80(9):580-604. PubMed ID: 16598496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity of various chemicals and mycotoxins in fresh primary duck embryonic fibroblasts: a comparison to HepG2 cells.
    Chen X; Murdoch R; Shafer DJ; Ajuwon KM; Applegate TJ
    J Appl Toxicol; 2016 Nov; 36(11):1437-45. PubMed ID: 26889939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment of accidents involving environmental high-toxicity substances.
    Gorsky V; Shvetzova-Shilovskaya T; Voschinin A
    J Hazard Mater; 2000 Nov; 78(1-3):173-90. PubMed ID: 10978566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements.
    Gupta P; Gramatke A; Einspanier R; Schütte C; von Kleist M; Sharbati J
    Toxicol In Vitro; 2017 Jun; 41():179-188. PubMed ID: 28263893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of cytotoxicity by emerging impedance spectroscopy.
    Xiao C; Luong JH
    Toxicol Appl Pharmacol; 2005 Aug; 206(2):102-12. PubMed ID: 15967198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Policy reforms to update chemical safety testing.
    Nel AE; Malloy TF
    Science; 2017 Mar; 355(6329):1016-1018. PubMed ID: 28280165
    [No Abstract]   [Full Text] [Related]  

  • 15. The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: the funnel hypothesis.
    Warne MS; Hawker DW
    Ecotoxicol Environ Saf; 1995 Jun; 31(1):23-8. PubMed ID: 7544261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a population balance model to a perfusion in vitro toxicity system.
    Abberger T; Jennings P; Mirlach A; Prajczer S; Pfaller W
    Toxicol In Vitro; 2006 Oct; 20(7):1213-24. PubMed ID: 16713169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Edge Effect Detection Method for Real-Time Cellular Analyzer Using Functional Principal Component Analysis.
    Guo Q; Pan T; Chen S; Zou X; Huang DY
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1563-1572. PubMed ID: 30843848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of declining toxicant concentrations on algal bioassay endpoints.
    Simpson SL; Roland MG; Stauber JL; Batley GE
    Environ Toxicol Chem; 2003 Sep; 22(9):2073-9. PubMed ID: 12959533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incipient cytotoxicity: A time-independent measure of cytotoxic potency in vitro.
    Gülden M; Kähler D; Seibert H
    Toxicology; 2015 Sep; 335():35-45. PubMed ID: 26159257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes.
    Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O
    ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.