BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 28092960)

  • 1. Mathematical analysis and dynamic active subspaces for a long term model of HIV.
    Loudon T; Pankavich S
    Math Biosci Eng; 2017 Jun; 14(3):709-733. PubMed ID: 28092960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of HIV infection: Simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism.
    Wasserstein-Robbins F
    Bull Math Biol; 2010 Jul; 72(5):1208-53. PubMed ID: 20151219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-linear mixed effect dynamic model incorporating prior exposure and adherence to treatment to describe long-term therapy outcome in HIV-patients.
    Labbé L; Verotta D
    J Pharmacokinet Pharmacodyn; 2006 Aug; 33(4):519-42. PubMed ID: 16786410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory viral dynamics in a delayed HIV pathogenesis model.
    Wang Y; Zhou Y; Wu J; Heffernan J
    Math Biosci; 2009 Jun; 219(2):104-12. PubMed ID: 19327371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis.
    Nwankwo A; Okuonghae D
    Bull Math Biol; 2018 Mar; 80(3):437-492. PubMed ID: 29282597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple model to simulate cellular changes in the T cell system following HIV-1 infection.
    Wang G; Krueger GR; Buja LM
    Anticancer Res; 2004; 24(3a):1689-98. PubMed ID: 15274342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian estimation of HIV-1 dynamics in vivo.
    Ushakova A; Pettersen FO; Mæland A; Lindqvist BH; Kvale D
    Math Med Biol; 2015 Mar; 32(1):38-55. PubMed ID: 24078026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic multidrug therapies for HIV: a control theoretic approach.
    Wein LM; Zenios SA; Nowak MA
    J Theor Biol; 1997 Mar; 185(1):15-29. PubMed ID: 9093552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission.
    Wang X; Tang S; Song X; Rong L
    J Biol Dyn; 2017 Aug; 11(sup2):455-483. PubMed ID: 27730851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short- and Long-Term Optimal Control of a Mathematical Model for HIV Infection of CD4+T Cells.
    Croicu AM
    Bull Math Biol; 2015 Nov; 77(11):2035-71. PubMed ID: 26493544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model and CD4+ lymphocyte dynamics in HIV infection.
    Hraba T; Dolezal J
    Emerg Infect Dis; 1996; 2(4):299-305. PubMed ID: 8969246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics.
    Bortz DM; Nelson PW
    Bull Math Biol; 2004 Sep; 66(5):1009-26. PubMed ID: 15294416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free terminal time optimal control problem of an HIV model based on a conjugate gradient method.
    Jang T; Kwon HD; Lee J
    Bull Math Biol; 2011 Oct; 73(10):2408-29. PubMed ID: 21271294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear incidence and stability of infectious disease models.
    Korobeinikov A; Maini PK
    Math Med Biol; 2005 Jun; 22(2):113-28. PubMed ID: 15778334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for Chagas disease with infection-age-dependent infectivity.
    Inaba H; Sekine H
    Math Biosci; 2004 Jul; 190(1):39-69. PubMed ID: 15172802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy.
    Liu S; Wang L
    Math Biosci Eng; 2010 Jul; 7(3):675-85. PubMed ID: 20578792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of HIV models with two time delays.
    Alshorman A; Wang X; Joseph Meyer M; Rong L
    J Biol Dyn; 2017 Mar; 11(sup1):40-64. PubMed ID: 26889761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE).
    Kamgang JC; Sallet G
    Math Biosci; 2008 May; 213(1):1-12. PubMed ID: 18405926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.
    Meshkat N; Anderson C; Distefano JJ
    Math Biosci; 2011 Sep; 233(1):19-31. PubMed ID: 21763702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global stability analysis of humoral immunity virus dynamics model including latently infected cells.
    Elaiw AM
    J Biol Dyn; 2015; 9():215-28. PubMed ID: 26145479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.