BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28093006)

  • 1. Blood malignancies presenting with mutations at equivalent residues in RUNX1-2 suggest a common leukemogenic pathway.
    Callea M; Fattori F; Bertini ES; Cammarata-Scalisi F; Callea F; Bellacchio E
    Leuk Lymphoma; 2017 Aug; 58(8):2002-2004. PubMed ID: 28093006
    [No Abstract]   [Full Text] [Related]  

  • 2. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta.
    Han MS; Kim HJ; Wee HJ; Lim KE; Park NR; Bae SC; van Wijnen AJ; Stein JL; Lian JB; Stein GS; Choi JY
    J Cell Biochem; 2010 May; 110(1):97-103. PubMed ID: 20225274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies.
    Taketani T; Taki T; Takita J; Tsuchida M; Hanada R; Hongo T; Kaneko T; Manabe A; Ida K; Hayashi Y
    Genes Chromosomes Cancer; 2003 Sep; 38(1):1-7. PubMed ID: 12874780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RUNX1 translocations and fusion genes in malignant hemopathies.
    De Braekeleer E; Douet-Guilbert N; Morel F; Le Bris MJ; Férec C; De Braekeleer M
    Future Oncol; 2011 Jan; 7(1):77-91. PubMed ID: 21174539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of the polycomb group proteins in the restriction of tumor development in hematological malignancies].
    Iwama A
    Rinsho Ketsueki; 2013 Jul; 54(7):642-8. PubMed ID: 23912347
    [No Abstract]   [Full Text] [Related]  

  • 6. Posttranslational modifications of RUNX1 as potential anticancer targets.
    Goyama S; Huang G; Kurokawa M; Mulloy JC
    Oncogene; 2015 Jul; 34(27):3483-92. PubMed ID: 25263451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations.
    Lachowiez C; Bannon S; Loghavi S; Wang F; Kanagal-Shamanna R; Mehta R; Daver N; Borthakur G; Pemmaraju N; Ravandi F; Patel KP; Garcia-Manero G; Takahashi K; Kantarjian H; Bhalla K; DiNardo CD
    Am J Hematol; 2020 Nov; 95(11):E313-E315. PubMed ID: 32804409
    [No Abstract]   [Full Text] [Related]  

  • 8. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis.
    Mizutani S; Yoshida T; Zhao X; Nimer SD; Taniwaki M; Okuda T
    Br J Haematol; 2015 Sep; 170(6):859-73. PubMed ID: 26010396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intragenic long noncoding RNA interacts epigenetically with the RUNX1 promoter and enhancer chromatin DNA in hematopoietic malignancies.
    Wang H; Li W; Guo R; Sun J; Cui J; Wang G; Hoffman AR; Hu JF
    Int J Cancer; 2014 Dec; 135(12):2783-94. PubMed ID: 24752773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y; Harada H
    J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation-driven colon neoplasmatogenesis in uPA-deficient mice is associated with an increased expression of Runx transcriptional regulators.
    Afaloniati H; Karagiannis GS; Hardas A; Poutahidis T; Angelopoulou K
    Exp Cell Res; 2017 Dec; 361(2):257-264. PubMed ID: 29107070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia.
    Engel ME; Hiebert SW
    Cancer Treat Res; 2010; 145():127-47. PubMed ID: 20306249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and transforming functions of RUNX1: a perspective.
    Mikhail FM; Sinha KK; Saunthararajah Y; Nucifora G
    J Cell Physiol; 2006 Jun; 207(3):582-93. PubMed ID: 16250015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis of myeloid transformation in familial platelet disorder/acute myeloid leukemia patients with haploinsufficient RUNX1 allele.
    Sakurai M; Kasahara H; Yoshida K; Yoshimi A; Kunimoto H; Watanabe N; Shiraishi Y; Chiba K; Tanaka H; Harada Y; Harada H; Kawakita T; Kurokawa M; Miyano S; Takahashi S; Ogawa S; Okamoto S; Nakajima H
    Blood Cancer J; 2016 Feb; 6(2):e392. PubMed ID: 26849013
    [No Abstract]   [Full Text] [Related]  

  • 15. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to
    Porter SN; Cluster AS; Yang W; Busken KA; Patel RM; Ryoo J; Magee JA
    Elife; 2016 Nov; 5():. PubMed ID: 27879203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aurora kinase and RUNX: Reaching beyond transcription.
    Chuang LS; Krishnan V; Ito Y
    Cell Cycle; 2016 Nov; 15(22):2999-3000. PubMed ID: 27494598
    [No Abstract]   [Full Text] [Related]  

  • 17. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes.
    Tsai SC; Shih LY; Liang ST; Huang YJ; Kuo MC; Huang CF; Shih YS; Lin TH; Chiu MC; Liang DC
    Clin Cancer Res; 2015 Aug; 21(15):3541-51. PubMed ID: 25840971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis.
    Senyuk V; Sinha KK; Li D; Rinaldi CR; Yanamandra S; Nucifora G
    Cancer Res; 2007 Jun; 67(12):5658-66. PubMed ID: 17575132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML.
    Hyde RK; Liu P; Friedman AD
    Adv Exp Med Biol; 2017; 962():265-282. PubMed ID: 28299663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marker chromosomes are a significant mechanism of high-level RUNX1 gene amplification in hematologic malignancies.
    Moosavi SA; Sanchez J; Adeyinka A
    Cancer Genet Cytogenet; 2009 Feb; 189(1):24-8. PubMed ID: 19167608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.