These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28093068)

  • 1. Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs.
    Gonen S; Jenko J; Gorjanc G; Mileham AJ; Whitelaw CB; Hickey JM
    Genet Sel Evol; 2017 Jan; 49(1):3. PubMed ID: 28093068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs.
    Jenko J; Gorjanc G; Cleveland MA; Varshney RK; Whitelaw CB; Woolliams JA; Hickey JM
    Genet Sel Evol; 2015 Jul; 47(1):55. PubMed ID: 26133579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.
    Gonen S; Battagin M; Johnston SE; Gorjanc G; Hickey JM
    Genet Sel Evol; 2017 Jul; 49(1):55. PubMed ID: 28676070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for accommodating gene-edited sires and their descendants in genetic evaluations.
    Sanglard LP; See GM; Spangler ML
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36897830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of genome editing on the introduction of monogenic traits in livestock.
    Bastiaansen JWM; Bovenhuis H; Groenen MAM; Megens HJ; Mulder HA
    Genet Sel Evol; 2018 Apr; 50(1):18. PubMed ID: 29661133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allele frequency changes due to hitch-hiking in genomic selection programs.
    Liu H; Sørensen AC; Meuwissen TH; Berg P
    Genet Sel Evol; 2014 Feb; 46(1):8. PubMed ID: 24495634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedigree relationships to control inbreeding in optimum-contribution selection realise more genetic gain than genomic relationships.
    Henryon M; Liu H; Berg P; Su G; Nielsen HM; Gebregiwergis GT; Sørensen AC
    Genet Sel Evol; 2019 Jul; 51(1):39. PubMed ID: 31286868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
    Hjortø L; Henryon M; Liu H; Berg P; Thomasen JR; Sørensen AC
    Genet Sel Evol; 2021 Sep; 53(1):75. PubMed ID: 34551728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population.
    Mueller ML; Cole JB; Sonstegard TS; Van Eenennaam AL
    J Dairy Sci; 2019 May; 102(5):4215-4226. PubMed ID: 30852022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program.
    Gautason E; Sahana G; Guldbrandtsen B; Berg P
    Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of alleles by genome editing (RAGE) against deleterious load.
    Johnsson M; Gaynor RC; Jenko J; Gorjanc G; de Koning DJ; Hickey JM
    Genet Sel Evol; 2019 Apr; 51(1):14. PubMed ID: 30995904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2017 Mar; 7(3):801-811. PubMed ID: 28064189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.
    Doekes HP; Veerkamp RF; Bijma P; Hiemstra SJ; Windig JJ
    Genet Sel Evol; 2018 Apr; 50(1):15. PubMed ID: 29642838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs.
    Liu H; Meuwissen TH; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):19. PubMed ID: 25886296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of manipulating recombination rates on response to selection in livestock breeding programs.
    Battagin M; Gorjanc G; Faux AM; Johnston SE; Hickey JM
    Genet Sel Evol; 2016 Jun; 48(1):44. PubMed ID: 27335010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of rare alleles on estimated genomic relationships from whole genome sequence data.
    Eynard SE; Windig JJ; Leroy G; van Binsbergen R; Calus MP
    BMC Genet; 2015 Mar; 16():24. PubMed ID: 25887220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing approaches to augment livestock breeding programs.
    Bishop TF; Van Eenennaam AL
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.