BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28093367)

  • 1. Effect of construction of TiO
    Huang Q; Yang Y; Zheng D; Song R; Zhang Y; Jiang P; Vogler EA; Lin C
    Acta Biomater; 2017 Mar; 51():505-512. PubMed ID: 28093367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of crystalline phase changes in titania (TiO
    Zhang L; Liao X; Fok A; Ning C; Ng P; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():91-101. PubMed ID: 29025678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors.
    Gong Z; Hu Y; Gao F; Quan L; Liu T; Gong T; Pan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110521. PubMed ID: 31569001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemocompatibility of polyzwitterion-modified titanium dioxide nanotubes.
    Jia E; Liang B; Lin Y; Su Z
    Nanotechnology; 2021 May; 32(30):. PubMed ID: 33752184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced interfacial adhesion and osseointegration of anodic TiO
    Hu N; Wu Y; Xie L; Yusuf SM; Gao N; Starink MJ; Tong L; Chu PK; Wang H
    Acta Biomater; 2020 Apr; 106():360-375. PubMed ID: 32058083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fabrication and photocatalytic activity of Pt-inserted titania nanotubes].
    Li HL; Luo WL; Tian WY; Chen T; Li C; Sun M; Zhu D; Liu RR; Zhao YL; Liu CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1623-6. PubMed ID: 19810545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of size and crystalline phase of TiO
    Li Y; Wang S; Dong Y; Mu P; Yang Y; Liu X; Lin C; Huang Q
    Bioact Mater; 2020 Dec; 5(4):1062-1070. PubMed ID: 32695936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.
    Butt A; Hamlekhan A; Patel S; Royhman D; Sukotjo C; Mathew MT; Shokuhfar T; Takoudis C
    J Oral Implantol; 2015 Oct; 41(5):523-31. PubMed ID: 24628292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of TiO2 nanotubes with different topographies.
    Wang Y; Wen C; Hodgson P; Li Y
    J Biomed Mater Res A; 2014 Mar; 102(3):743-51. PubMed ID: 23554372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood compatibility of titanium oxides with various crystal structure and element doping.
    Maitz MF; Pham MT; Wieser E; Tsyganov I
    J Biomater Appl; 2003 Apr; 17(4):303-19. PubMed ID: 12797422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in TiO
    Cheng Y; Yang H; Yang Y; Huang J; Wu K; Chen Z; Wang X; Lin C; Lai Y
    J Mater Chem B; 2018 Apr; 6(13):1862-1886. PubMed ID: 32254353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simultaneous Removal of Cd (II) and Phenol by Titanium Dioxide-Titanate Nanotubes Composite Nanomaterial Synthesized Through Alkaline-Acid Hydrothermal Method].
    Lei L; Jin YJ; Wang T; Zhao X; Yan Y; Liu W
    Huan Jing Ke Xue; 2015 Jul; 36(7):2573-80. PubMed ID: 26489327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats.
    Nemmar A; Melghit K; Ali BH
    Exp Biol Med (Maywood); 2008 May; 233(5):610-9. PubMed ID: 18375825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.
    Wang Y; Zhang D; Wen C; Li Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO₂ nanoparticle-decorated TiO₂ nanotubes.
    Liu W; Su P; Chen S; Wang N; Wang J; Liu Y; Ma Y; Li H; Zhang Z; Webster TJ
    Nanomedicine (Lond); 2015; 10(5):713-23. PubMed ID: 25816875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.
    Guan D; Cai C; Wang Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3641-50. PubMed ID: 21776749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles.
    Liu X; Li X; Li S; Zhou X; Li S; Wang Q; Dai J; Lai R; Xie L; Zhong M; Zhang Y; Zhou L
    J Biomed Nanotechnol; 2014 Feb; 10(2):194-204. PubMed ID: 24738328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.