These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Using de novo protein structure predictions to measure the quality of very large multiple sequence alignments. Fox G; Sievers F; Higgins DG Bioinformatics; 2016 Mar; 32(6):814-20. PubMed ID: 26568625 [TBL] [Abstract][Full Text] [Related]
4. Making automated multiple alignments of very large numbers of protein sequences. Sievers F; Dineen D; Wilm A; Higgins DG Bioinformatics; 2013 Apr; 29(8):989-95. PubMed ID: 23428640 [TBL] [Abstract][Full Text] [Related]
5. APDB: a novel measure for benchmarking sequence alignment methods without reference alignments. O'Sullivan O; Zehnder M; Higgins D; Bucher P; Grosdidier A; Notredame C Bioinformatics; 2003; 19 Suppl 1():i215-21. PubMed ID: 12855461 [TBL] [Abstract][Full Text] [Related]
6. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy. Raghava GP; Searle SM; Audley PC; Barber JD; Barton GJ BMC Bioinformatics; 2003 Oct; 4():47. PubMed ID: 14552658 [TBL] [Abstract][Full Text] [Related]
8. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Yamada KD; Tomii K; Katoh K Bioinformatics; 2016 Nov; 32(21):3246-3251. PubMed ID: 27378296 [TBL] [Abstract][Full Text] [Related]
9. Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment. Ferragina P; Giancarlo R; Greco V; Manzini G; Valiente G BMC Bioinformatics; 2007 Jul; 8():252. PubMed ID: 17629909 [TBL] [Abstract][Full Text] [Related]
10. DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment. Wright ES BMC Bioinformatics; 2015 Oct; 16():322. PubMed ID: 26445311 [TBL] [Abstract][Full Text] [Related]
11. A benchmark study of sequence alignment methods for protein clustering. Wang Y; Wu H; Cai Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):529. PubMed ID: 30598070 [TBL] [Abstract][Full Text] [Related]
12. DNA reference alignment benchmarks based on tertiary structure of encoded proteins. Carroll H; Beckstead W; O'Connor T; Ebbert M; Clement M; Snell Q; McClellan D Bioinformatics; 2007 Oct; 23(19):2648-9. PubMed ID: 17686799 [TBL] [Abstract][Full Text] [Related]
13. MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts. Deng X; Cheng J BMC Bioinformatics; 2011 Dec; 12():472. PubMed ID: 22168237 [TBL] [Abstract][Full Text] [Related]
14. Mind the gaps: evidence of bias in estimates of multiple sequence alignments. Golubchik T; Wise MJ; Easteal S; Jermiin LS Mol Biol Evol; 2007 Nov; 24(11):2433-42. PubMed ID: 17709332 [TBL] [Abstract][Full Text] [Related]
17. SBAL: a practical tool to generate and edit structure-based amino acid sequence alignments. Wang CK; Broder U; Weeratunga SK; Gasser RB; Loukas A; Hofmann A Bioinformatics; 2012 Apr; 28(7):1026-7. PubMed ID: 22332239 [TBL] [Abstract][Full Text] [Related]
18. PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Pei J; Grishin NV Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437 [TBL] [Abstract][Full Text] [Related]
19. Model-based prediction of sequence alignment quality. Ahola V; Aittokallio T; Vihinen M; Uusipaikka E Bioinformatics; 2008 Oct; 24(19):2165-71. PubMed ID: 18678587 [TBL] [Abstract][Full Text] [Related]
20. Clustal Omega for making accurate alignments of many protein sequences. Sievers F; Higgins DG Protein Sci; 2018 Jan; 27(1):135-145. PubMed ID: 28884485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]