These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28093574)

  • 1. An acoustically-driven vocal tract model for stop consonant production.
    Story BH; Bunton K
    Speech Commun; 2017 Mar; 87():1-17. PubMed ID: 28093574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation of vocal tract shape, formant transitions, and stop consonant identification.
    Story BH; Bunton K
    J Speech Lang Hear Res; 2010 Dec; 53(6):1514-28. PubMed ID: 20643794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parametric model of the vocal tract area function for vowel and consonant simulation.
    Story BH
    J Acoust Soc Am; 2005 May; 117(5):3231-54. PubMed ID: 15957790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relation of velopharyngeal coupling area to the identification of stop versus nasal consonants in North American English based on speech generated by acoustically driven vocal tract modulations.
    Story BH; Bunton K
    J Acoust Soc Am; 2021 Nov; 150(5):3618. PubMed ID: 34852618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of speech production based on the acoustic relativity of the vocal tract.
    Story BH; Bunton K
    J Acoust Soc Am; 2019 Oct; 146(4):2522. PubMed ID: 31671993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of voiced stop consonants produced by acoustically driven vocal tract modulations.
    Story BH; Bunton K
    JASA Express Lett; 2021 Aug; 1(8):085203. PubMed ID: 36154248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vowel and consonant contributions to vocal tract shape.
    Story BH
    J Acoust Soc Am; 2009 Aug; 126(2):825-36. PubMed ID: 19640047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of vocal tract shape for VCV syllables for a speech training aid.
    Shah MS; Pandey PC
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6642-5. PubMed ID: 17281795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic and perceptual effects of changes in vocal tract constrictions for vowels.
    Gay T; BoƩ LJ; Perrier P
    J Acoust Soc Am; 1992 Sep; 92(3):1301-9. PubMed ID: 1401517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic properties and perception of stop consonant release transients.
    Repp BH; Lin HB
    J Acoust Soc Am; 1989 Jan; 85(1):379-96. PubMed ID: 2921420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system.
    Callan DE; Kent RD; Guenther FH; Vorperian HK
    J Speech Lang Hear Res; 2000 Jun; 43(3):721-36. PubMed ID: 10877441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glove-talk II - a neural-network interface which maps gestures to parallel formant speech synthesizer controls.
    Fels SS; Hinton GE
    IEEE Trans Neural Netw; 1997; 8(5):977-84. PubMed ID: 18255700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glove-TalkII--a neural-network interface which maps gestures to parallel formant speech synthesizer controls.
    Fels SS; Hinton GE
    IEEE Trans Neural Netw; 1998; 9(1):205-12. PubMed ID: 18252442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling consonant-context effects in a large database of spontaneous speech recordings.
    Kiefte M; Nearey TM
    J Acoust Soc Am; 2017 Jul; 142(1):434. PubMed ID: 28764432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic invariance in speech production: evidence from measurements of the spectral characteristics of stop consonants.
    Blumstein SE; Stevens KN
    J Acoust Soc Am; 1979 Oct; 66(4):1001-17. PubMed ID: 512211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formant frequency fluctuation as an index of motor steadiness in the vocal tract.
    Gerratt BR
    J Speech Hear Res; 1983 Jun; 26(2):297-304. PubMed ID: 6887818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the ability of a physiologically constrained area function model of the vocal tract to produce normal formant patterns under perturbed conditions.
    Story BH
    J Acoust Soc Am; 2004 Apr; 115(4):1760-70. PubMed ID: 15101654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.