These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28093777)

  • 1. Description of non-covalent interactions in SCC-DFTB methods.
    Miriyala VM; Řezáč J
    J Comput Chem; 2017 Apr; 38(10):688-697. PubMed ID: 28093777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3.
    Řezáč J
    J Chem Theory Comput; 2017 Oct; 13(10):4804-4817. PubMed ID: 28949517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of halogen bonding in semiempirical quantum-mechanical and self-consistent charge density-functional tight-binding methods.
    Řezáč J
    J Comput Chem; 2019 Jun; 40(17):1633-1642. PubMed ID: 30941801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
    Gaus M; Cui Q; Elstner M
    J Chem Theory Comput; 2012 Apr; 7(4):931-948. PubMed ID: 23204947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules.
    Gruden M; Andjeklović L; Jissy AK; Stepanović S; Zlatar M; Cui Q; Elstner M
    J Comput Chem; 2017 Sep; 38(25):2171-2185. PubMed ID: 28736893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding intermolecular interactions of large systems in ground state and excited state by using density functional based tight binding methods.
    Xu Y; Friedman R; Wu W; Su P
    J Chem Phys; 2021 May; 154(19):194106. PubMed ID: 34240911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters.
    Rapacioli M; Spiegelman F; Talbi D; Mineva T; Goursot A; Heine T; Seifert G
    J Chem Phys; 2009 Jun; 130(24):244304. PubMed ID: 19566150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods.
    Řezáč J; Hobza P
    J Chem Theory Comput; 2012 Jan; 8(1):141-51. PubMed ID: 26592877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization.
    Christensen AS; Elstner M; Cui Q
    J Chem Phys; 2015 Aug; 143(8):084123. PubMed ID: 26328834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved electronic properties from third-order SCC-DFTB with cost efficient post-SCF extensions.
    Kaminski S; Gaus M; Elstner M
    J Phys Chem A; 2012 Dec; 116(48):11927-37. PubMed ID: 23167841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general tight-binding based energy decomposition analysis scheme for intermolecular interactions in large molecules.
    Xu Y; Zhang S; Lindahl E; Friedman R; Wu W; Su P
    J Chem Phys; 2022 Jul; 157(3):034104. PubMed ID: 35868936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization.
    Yang Y; Yu H; York D; Elstner M; Cui Q
    J Chem Theory Comput; 2008; 4(12):2067-2084. PubMed ID: 19352441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals.
    Lu X; Duchimaza-Heredia J; Cui Q
    J Phys Chem A; 2019 Aug; 123(34):7439-7453. PubMed ID: 31373822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-interaction and strong correlation in DFTB.
    Hourahine B; Sanna S; Aradi B; Köhler C; Niehaus T; Frauenheim T
    J Phys Chem A; 2007 Jul; 111(26):5671-7. PubMed ID: 17552499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.