BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28093875)

  • 21. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation.
    Grondin A; Rodrigues O; Verdoucq L; Merlot S; Leonhardt N; Maurel C
    Plant Cell; 2015 Jul; 27(7):1945-54. PubMed ID: 26163575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
    Zimmerli C; Ribot C; Vavasseur A; Bauer H; Hedrich R; Poirier Y
    Plant J; 2012 Oct; 72(2):199-211. PubMed ID: 22612335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure.
    Lind C; Dreyer I; López-Sanjurjo EJ; von Meyer K; Ishizaki K; Kohchi T; Lang D; Zhao Y; Kreuzer I; Al-Rasheid KA; Ronne H; Reski R; Zhu JK; Geiger D; Hedrich R
    Curr Biol; 2015 Mar; 25(7):928-35. PubMed ID: 25802151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary Conservation of ABA Signaling for Stomatal Closure.
    Cai S; Chen G; Wang Y; Huang Y; Marchant DB; Wang Y; Yang Q; Dai F; Hills A; Franks PJ; Nevo E; Soltis DE; Soltis PS; Sessa E; Wolf PG; Xue D; Zhang G; Pogson BJ; Blatt MR; Chen ZH
    Plant Physiol; 2017 Jun; 174(2):732-747. PubMed ID: 28232585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis,
    Zhang Y; Xu W; Li Z; Deng XW; Wu W; Xue Y
    Plant Physiol; 2008 Dec; 148(4):2121-33. PubMed ID: 18835996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.
    Lim CW; Baek W; Jung J; Kim JH; Lee SC
    Int J Mol Sci; 2015 Jul; 16(7):15251-70. PubMed ID: 26154766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning.
    Fanourakis D; Carvalho SM; Almeida DP; Heuvelink E
    Physiol Plant; 2011 Jul; 142(3):274-86. PubMed ID: 21457269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages.
    Gong L; Liu XD; Zeng YY; Tian XQ; Li YL; Turner NC; Fang XW
    Plant Physiol; 2021 May; 186(1):782-797. PubMed ID: 33620497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close?
    McAdam EL; Brodribb TJ; McAdam SA
    Plant Cell Environ; 2017 May; 40(5):741-747. PubMed ID: 28042679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of abscisic acid-mediated control of stomatal aperture.
    Munemasa S; Hauser F; Park J; Waadt R; Brandt B; Schroeder JI
    Curr Opin Plant Biol; 2015 Dec; 28():154-62. PubMed ID: 26599955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways.
    Garcia-Mata C; Lamattina L
    Nitric Oxide; 2007; 17(3-4):143-51. PubMed ID: 17889574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana.
    Rezaei Nejad A; van Meeteren U
    J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus.
    Iida S; Ikeda M; Amano M; Sakayama H; Kadono Y; Kosuge K
    J Plant Res; 2016 Sep; 129(5):853-862. PubMed ID: 27324202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide, stomatal closure, and abiotic stress.
    Neill S; Barros R; Bright J; Desikan R; Hancock J; Harrison J; Morris P; Ribeiro D; Wilson I
    J Exp Bot; 2008; 59(2):165-76. PubMed ID: 18332225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Update on roles of nitric oxide in regulating stomatal closure.
    Sun LR; Yue CM; Hao FS
    Plant Signal Behav; 2019; 14(10):e1649569. PubMed ID: 31370725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the origins of osmotically driven stomatal movements.
    Sussmilch FC; Roelfsema MRG; Hedrich R
    New Phytol; 2019 Apr; 222(1):84-90. PubMed ID: 30444541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism.
    Wilkinson S; Davies WJ
    Plant Cell Environ; 2009 Aug; 32(8):949-59. PubMed ID: 19302171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.